Автомобильный адаптер для ноутбука. Современная автомобильная зарядка для ноутбука Автомобильное зарядное для ноутбука делл своими руками

У многих есть машина, а ноутбук есть почти у каждого. Бывают ситуации, когда нужно запитать или зарядить его аккумулятор в авто, но тут возникает вопрос КАК?

Питание ноутбука от авто невозможно, едь напряжение бортовой сети всего 13,5 вольт (в среднем). Именно для решения этой проблемы и пригодится сделанный своими руками преобразователь напряжения.
Схема этой не сложной самоделки представлена ниже.

Запас по току этой схемы 8 ампер, при напряжении в 19 вольт. В то время, когда любой современный ноут потребляет не больше 4 ампер, запас имеется приличный.

Давайте рассмотрим примененные детали и принцип, по которому работает данный преобразователь. Его сердцем является микросхема UC3843 (генератор с широтно-импульсной модуляцией и компаратором для стабилизации напряжения на выходе) в типовом включении. Мускулами являются дроссель L1 и сборка полевых транзисторов VT1 (IRF7341), в моем случае применен Р1203, выпаянный из материнской платы какого-то ноутбука. Малые габариты устройства достигаются применением деталей для поверхностного монтажа и высокой частоте преобразования (150 кГц соответственно элементам R2 C2). Накачка повышенного напряжения происходит на дросселе L1 и диоде Шоттки VD1 выпрямителя. Дроссель наматывается на стандартном желто-белом кольце от компьютерного блока питания. Количество витков 20 – 25, проводом 1,5 мм (удобнее мотать сложенным втрое проводом 0,6). Диод VD 1 применен из того же блока, что и кольцо. И имеет маркировку F2020CT. Выходное напряжение, при желании, можно получит и другое, для этого нужно подобрать резистор R9.
Немного о возможных заменах и конструктивных особенностях.

Как я уже говорила вместо матрицы IRF7341, применен полевой транзистор Р1203, но можно использовать и что-нибудь попроще, типа IRFZ48N, IRFZ44N, IRFZ34N, из отечественных транзисторов подойдут КП727Б, КП723, КП746, любые из серии КП812, или другой мощный N-канальный полевик.

Конструктивно этот самодельный преобразователь выполнен на монтажной плате, 5 на 4 сантиметра. Конечно же, можно было и печатную плату протравить, но времени было мало поэтому так.

В этом посте собраны наиболее интересные схемные решения по преобразованию бортовой сети автомобиля 12 вольт в напряжение 16-18 вольт для питания ноутбука. Схемы реализованы на зарубежных и отечественных элементах, кому как нравится. Выбирайте, творите и не забудьте пожалуйста оставить отзыв о выбранной схеме.

Авто-адаптер для ноутбука.

Для питания ноутбуков от бортовой сети автомобиля выпускаются преобразователи напряжения, но они имеют достаточно высокую стоимость, от $50 и выше. Стоимость описываемого преобразователя намного ниже. Тем более, что большую часть деталей можно взять из старого блока питания от компьютера. Сборка займет пару вечеров.

В качестве формирователя ШИМ преобразователя используется интегральный таймер КР1006ВИ1 или импортный аналог LM555. С его выхода сигнал поступает на ключ - полевой транзистор. Частота преобразования определяется конденсатором С1, и при емкости указанной на схеме, составляет примерно 40 кГц. Управление скважностью осуществляется через вывод 5 таймера. Некоторые типы импортных аналогов таймера имеют другую схему управления по этому входу, и поэтому могут работать некорректно.

Вместо транзистора 45N03 можно применить BUZ11, CEB603, CEP703, NDP406, IRFZ33 и многие другие, главное, чтобы максимальное напряжение было не менее 40 В, максимальный ток не менее 15 А, и корпус ТО-220.

VD2 – сдвоенный диод Шоттки с обратным напряжением не менее 40 В и максимальным током не менее 15А, в корпусе ТО-220. Например SLB1640, или STPS1545. Диод VD1 – защита от переполюсовки, прямой ток не менее 6 А. Вместо VT2 применим, например, КТ315. Стабилитрон VD3 определяет выходное напряжение преобразователя.
Одна из самых ответственных деталей – дроссель, намотан на кольце из порошкового железа, диаметром около 27 мм, применяемого в компьютерных блоках питания в качестве дросселя групповой стабилизации. Обмотка выполнена 21 витком из трех сложенных вместе проводов ПЭВ-1 диаметром 0.75 мм. Дроссель имеет индуктивность около 44 мкГн и сопротивление около 0.1 Ом.

В качестве корпуса используется металлическая коробка от 50-ваттного электронного трансформатора для питания 12 В галогенных ламп освещения. Ее размеры 67×46×30 мм. В этом корпусе вместо двух ключей полумоста можно удобно разместить полевой транзистор и диод, чтобы прижать их к стенке корпуса для отвода тепла. Корпуса транзистора и диода нужно изолировать от корпуса прокладкой из фторопласта или слюды.

Рисунок печатной платы для лазерно-утюговой технологии.

Схема размещения компонентов на плате:

КПД этого преобразователя, при выходном токе 3 А, составляет 95%. При менее жестких режимах КПД может достигать 97%, он сильно зависит от качества дросселя, VT1 и VD2. Впрочем повышение КПД имеет смысл только для снижения выделяемого тепла полевым транзистором, диодом Шоттки и дросселем. При указанном КПД, при длительной работе, корпус преобразователя имеет температуру около 45 градусов Цельсия.

Следует обратить особое внимание на качество разъемов, так как через них будет протекать значительный ток. Также провода, особенно идущие к входному разъему от прикуривателя, нужно выбирать сечением более 1.5 мм2.

Автомобильный блок питания ноутбука на таймере КР1006ВИ1.

Для питания ноутбука от бортовой сети автомобиля требуется повышающий преобразователь с выходным напряжением около 19 В. В качестве примера построения подобных преобразователей можно указать конструкцию , выполненную на базе специализированной микросхемы КР1156ЕУ5. Хотя в настоящее время существует большое разнообразие микросхем для построения импульсных источников питания, предложенная конструкция, схема которой изображена на рисунке, выполнена на таймере КР1006ВИ1. При этом схема отличается простотой и обладает неплохими параметрами: так, КПД преобразователя составляет около 88 %.

Используемый в устройстве тип модуляции является разновидностью частотно-импульсной модуляции и характеризуется тем, что ширина импульсов является переменной, а длительность паузы между ними – постоянной. Максимальный ток нагрузки преобразователя составляет 4,74 А. В схеме реализована защита от пониженного входного напряжения: в случае его снижения ниже 9 В выходное напряжение преобразователя тоже начинает снижаться, предотвращая насыщение дросселя и выход из строя силового ключа. Также имеется защита выхода от значительного перенапряжения: в случае нарушения обратной связи выходное напряжение преобразователя ограничивается величиной порядка 25 В.

Микросхема DA1 включена по схеме генератора прямоугольных импульсов, ширина которых зависит от напряжения на выводе 5 – модулирующего напряжения. Номиналы времязадающих элементов R2 и C1 выбраны таким образом, что пауза между импульсами имеет продолжительность около 9,1 мкс, а длительность импульсов варьируется ориентировочно от 2,8 мкс (при Uвх = 15 В) до 9 мкс (при Uвх = 10 В). Таким образом, частота преобразования может находиться в пределах 55…84 кГц. Напряжение на выводе 5 составляет 4,1…6 В в зависимости от входного напряжения. Этот диапазон определяется сопротивлением резистора R1. В случае малой нагрузки модулирующее напряжение может быть ниже указанных значений. Импульсы, формируемые на выходе микросхемы, управляют силовым ключом VT2, который коммутирует дроссель L1. Дроссель через диод VD2 передаёт заряд накопительному конденсатору C5. На этом конденсаторе формируется выходное напряжение около 19 В.

Стабилизирующая обратная связь выполнена на транзисторе VT1 и стабилитроне VD1. Разность выходного напряжения преобразователя и напряжения стабилизации стабилитрона VD1 сравнивается с напряжением эмиттерного перехода транзистора VT1. Полученная в результате сравнения ошибка усиливается транзистором и определяет модулирующее напряжение. Посредством конденсатора C3 реализован фильтр НЧ, который уменьшает влияние пульсаций выходного напряжения на модулирующее напряжение. Резистор R4 ограничивает базовый ток транзистора VT1. Резистор R5 задаёт ток стабилизации стабилитрона около 2 мА. Предположим, выходное напряжение преобразователя стало выше номинального значения. Тогда ток базы транзистора увеличивается, и напряжение на выводе 5 микросхемы снижается. В результате, скважность импульсов повышается, что приводит к снижению выходного напряжения преобразователя. При снижении выходного напряжения ниже номинального значения процессы идут в обратном направлении.

Вывод 4 микросхемы соединён с выводом 5 для того, чтобы генератор при необходимости мог отключаться и пропускать импульсы. Такая необходимость бывает при работе преобразователя с малой нагрузкой или без нагрузки. Дело в том, что из-за наличия пульсаций тока через дроссель за время, пока силовой ключ VT2 открыт, дроссель успевает запасти количество энергии, которое затем может оказаться невостребованным нагрузкой, что приводит к росту выходного напряжения. Обратная связь стремится скомпенсировать повышение напряжения, убрав избыток тока за счёт уменьшения напряжения на выводе 5 и повышения скважности импульсов. Но этого может оказаться недостаточно, поскольку минимальная длительность импульсов ограничена, и тогда произошёл бы дальнейший рост выходного напряжения, приводящий к перегрузке цепи обратной связи. Поэтому, если модулирующее напряжение снизилось примерно до 0,7 В, на вывод 4 микросхемы поступает сигнал сброса и приостанавливает работу генератора. Поскольку при малой нагрузке генератор работает в режиме «стоп-старт», возможно появление акустических шумов, однако это не препятствует нормальному функционированию преобразователя.

Конденсатор C2 фильтрует помехи во входной цепи питания. Дополнительный фильтрующий конденсатор C4 следует установить в непосредственной близости к микросхеме DA1. Конденсатор C6 подавляет всплески выходного напряжения, которые образуются на внутренней индуктивности конденсатора C5 в моменты закрывания ключа VT2. Конденсаторы C4 и C6 должны быть керамическими.

Силовой транзистор КП727Б можно заменить на КП723 c буквами А–В, КП746 c буквами А–В, любые транзисторы из серии КП812, а также IRFZ34N, BUZ11 или аналогичные приборы, рассчитанные на постоянный ток не менее 15 А и имеющие, по возможности, малое сопротивление открытого канала. Диод с барьером Шоттки КД272А заменяется на 2Д2998 с буквами Б, В, КД2998 с буквами В–Д, MBR1635, MBR1645, любые приборы из серий 2Д252, КД272, КД273, 2Д2992–2Д2997, 2Д2999, параллельно соединённые сдвоенные диоды из серий КД270, КД271, КД238, а также другие диоды Шоттки, рассчитанные на прямой ток не менее 15 А и обратное напряжение не менее 25 В. Диод VD2 и транзистор VT2 необходимо снабдить теплоотводами площадью по 50 см2 каждый. В качестве стабилитрона VD1 можно использовать КС218Ж, КС518А, КС508Г, КС509Б, 1N4746 или другие стабилитроны с напряжением стабилизации 18 В. Для более точной настройки выходного напряжения может потребоваться подбор стабилитрона. Микросхема DA1, кроме указанной на схеме, может быть КР1087ВИ2, а также любым из зарубежных аналогов (NE555N и т. п.). Транзистор VT1 – КТ201Г, КТ306Г, КТ312В, КТ316Д, КТ342А, КТ342ГМ, КТ358В, КТ375Б, КТ3102А, КТ315 с буквами Б, Г, Е, Ж; КТ340 с буквами А, Б; КТ503 с буквами Б, Г; BC547A. Можно использовать и другие транзисторы, у которых типовое значение коэффициента передачи тока базы составляет около 100 при токе коллектора 1 мА. Дроссель L1 наматывается проводом ПЭВ-2 диаметром 1,25 мм на двух сложенных вместе кольцевых магнитопроводах КП27×15×6 из пермаллоя МП140. Подойдёт и более тонкий провод, соединённый в несколько жил с общей площадью сечения около 1 мм2. Намотка содержит 16 витков. Можно также применить жёлто-белый кольцевой магнитопровод T106-26 размерами 27×14×12 мм от многообмоточного дросселя в блоке питания компьютера, в этом случае оставляется имеющаяся на дросселе обмотка в 24 витка провода диаметром 1 мм, остальные обмотки удаляются. При самостоятельной намотке она выполняется в один полный слой провода диаметром 1…1,25 мм. Подойдут и другие дроссели с индуктивностью не менее 18 мкГн, рассчитанные на утроенный максимальный ток нагрузки. С другой стороны, индуктивность дросселя не должна быть слишком большой: при его индуктивности порядка 100 мкГн и более обратная связь стабилизатора может потерять устойчивость, и на коллекторе транзистора VT1 будут незатухающие колебания.

Используемые в устройстве конденсаторы C2, C5 должны иметь допустимый ток пульсаций соответственно около 2 А и 3 А или более. Также они должны иметь, по возможности, малое внутреннее сопротивление, т. е. относиться к категории низкоимпедансных конденсаторов («Low ESR»). Это позволяет снизить пульсации выходного напряжения и повысить надёжность устройства. Подойдут, например, конденсаторы Jamicon серий WL, TL, TZ; CapXon серий GF, LZ; Nichicon серий HV, HD. При необходимости каждый из указанных конденсаторов можно заменить несколькими параллельно соединёнными одинаковыми конденсаторами. При этом можно ориентировочно полагать, что допустимый ток пульсаций растёт пропорционально числу соединённых конденсаторов.

Для подключения устройства к бортовой сети автомобиля применяется вилка «прикуривателя» с внутренним предохранителем FU1. Провода, соединяющие вилку и вход преобразователя – гибкие, медные, многожильные в ПХВ изоляции, сечением не менее 2,5 мм2. Следует иметь в виду, что входной ток устройства может достигать 10 А. Он не должен течь через пружину внутри вилки «прикуривателя». Для этого пружина дублируется проводом.

Автомобильный адаптер для ноутбука.

Многие современные ноутбуки имеют возможность питания от бортовой сети автомобиля через гнездо прикуривателя. Если же в вашем ноутбуке такая возможность не предусмотрена, поможет описанное здесь устройство. Оно обеспечивает на выходе напряжение 16.5 В при токе до 4 А.

Схема устройства приведена на рисунке.

Оно представляет собой однотактный импульсный повышающий конвертор напряжения, собранный по типовой схеме на микросхеме UC3843. Отличительная особенность схемы - применение в ней SMD-компонент (в частности, силовых ключей в корпусе S08), что позволило «вписать» устройство в габариты «корпуса для радиолюбителя №1» (45x30x15 мм). Устройство собрано на двухсторонней печатной плате размером 37×23 мм из стеклотекстолита толщиной 1.5 мм, причем верхняя сторона платы используется только в качестве экрана и общего провода. Печатная плата устройства (зеркальное изображение) приведена на рис.2

Катушка L1 и конденсатор С9 установлены с обратной стороны платы (под катушку в плате сделан вырез), все остальные детали - так, как показано на рисунке. Типы примененных компонентов приведены в таблице.

Правильно собранное устройство налаживания не требует. Если требуется иное выходное напряжение, следует изменить величину резистора R9, исходя из того, что на резисторе R10 должно при этом получиться напряжение, равное 2.5 В.

Автомобильный блок питания для ноутбука.

Схема устройства:

Здесь представлена схема устройства (преобразователя) питания ноутбука от автомобиля (от аккумулятора). Для тех, кто много времени проводит за рулем автомобиля и при этом не желает расставаться со своим любимым ноутом, приведенная в статье схема преобразователя сослужит хорошую службу. Данное устройство повышает напряжение от 12 до 18 вольт, при этом обеспечивая выходной ток, равный 3.2 ампера, что вполне достаточно для работы ноутбука.

О деталях:

Применены постоянные резисторы МЛТ, оксидные конденсаторы К50-35 или подобные импортные, конденсатор С1 - К73-17 ; С3 - К10-17. Транзистор КТ854АМ можно заменить на КТ854 БМ или КТ819БМ с коэффициентом передачи по току не менее 15 ; диодную сборку SBL2040CT можно заменить на MBR1535CT - MBR1560CT, КД270ВС - КД270ЕС. Светодиод может быть любой из серии АЛ307, КИПД21, КИПД24, диод VD1 - любой маломощный выпрямительный.

Налаживание устройства:

Налаживание сводится к установке частоты преобразования, соответствующей максимальному КПД. Для этого ВХОД преобразователя через амперметр подключают к источнику постоянного тока напряжением 12В и мощностью не менее 100 Вт, в качестве которого можно применить импульсный блок питания от компьютера. К выходу преобразователя подключают нагрузочный резистор сопротивлением 5,1 Ом мощностью 50Вт (например ПЭВ-50) и параллельно ему - вольтметр постоянного тока. Конденсатором С4 плавно изменяя частоту преобразования, добиваются минимального значения выходного тока при неизменном выходном напряжении. Если не требуется получить максимальный КПД преобразователя, конденсатор С4 можно не устанавливать, но емкость конденсатора С3 должна быть 360пФ.

Пользуясь ноутбуком, рано ли поздно сталкиваешься с ситуацией когда аккумулятор ноутбука выходит из строя и не заряжается, соответственно ноутбук можете использовать только как настольный компьютер. Мобильность его при этом становится совсем не мобильной.
Часто выезжаю на машине, при этом ноутбук не помешал бы… и вот наткнулся на одном сайте радиолюбителей на статью о том, как сделать автомобильный адаптер для ноутбука.

Современные портативные компьютеры, так называемые, ноутбуки, пользуются заслуженной популярностью. Они намного удобнее стационарных настольных собратьев. Ноутбук можно взять с собой, например, в деловую поездку, пользоваться им при выездных работах. И даже как домашний «центр развлечения» ноутбук более удобен, так как занимает минимум места. Однако, на мой взгляд, есть один чрезвычайно важный минус, - большинство ноутбуков питаются от сетевого источника напряжением 19V, что делает невозможным их непосредственное питание от бортовой сети автомобиля (12-14V). А это очень важно, особенно при выездной работе, так как емкости собственной батареи ноутбука обычно хватает не более чем на два часа работы в активном режиме. А как быть, если вам, на каком-то объекте нужно целые сутки обрабатывать какие-то данные, а под рукой нет никакого источника питания кроме бортовой сети «УАЗика», на котором вы приехали? А если у вас вообще батарея перестала работать (вышла из строя и не заряжается, а вам нужно в поездке сипользовать ноутбук....

Безусловно, должны быть какие-то сетевые адаптеры, позволяющие подключать ноутбук к автомобилю, но, практически в широкой продаже их нет, а если и есть, то цена «под-заказ из Германии» получается близкой к цене целого ноутбука.

Ниже приводится описание относительно несложной схемы адаптера (DC-DC преобразователя), повышающего напряжение бортовой сети автомобиля до 19V, необходимого для питания ноутбука. И поддерживающего это напряжение стабильным.

Адаптер выполнен на основе микросхемы LM3524, представляющей собой высокочастотный импульсный DC-DC преобразователь с накачкой на индуктивности, с выходным током до 200mA, выходной ток которого, в данной схеме, повышен до 3,5-4А с помощью мощного транзисторного ключа (на транзисторах VT1 и VT2).

Рассмотрим схему внимательнее. Напряжение от бортовой сети автомобиля поступает в цепь питания микросхемы D1 и выходного ключа через плавкий предохранитель Р1 и низкоомный проволочный резистор R6, смягчающий пуск генератора и работающий в схеме защиты от перегрузки. Ток потребления микросхема D1 определяет по напряжению на R6, поступающему на входы контроля перегрузки - выводы 4 и 5 D1. Напряжение на R6 тем больше, чем больше ток нагрузки (и фактический ток потребления от источника).

Пара выходных транзисторов микросхемы D1 включены параллельно (эмиттеры -выводы 14 и 11, коллекторы - выводы 12 и 13). Нагружены коллекторы выходных транзисторов резистором R10. С этого резистора импульсы поступают на неинвертирующий ключ на транзисторах VT1 и VT2. Транзистор VT1 служит предварительным инвертором, а s качестве выходного транзистора VT2 используется мощный полевой ключевой транзистор с малым сопротивлением открытого канала. Благодаря малому сопротивлению открытого канала, несмотря на значительный ток, мощность на нем рассеивается небольшая, и радиатор практически не требуется. Исключительно «для гарантии» на него установлен пластинчатый радиатор от выходного транзистора кадровой развертки телевизора типа 3-УСЦТ (пластина размерами, примерно, 25х35мм).

Накачка напряжения происходит на индуктивности L1. Диод VD2 выпрямляет импульсы самоиндукции и на конденсаторе С11 возникает некоторое постоянное напряжение.

Для стабилизации выходного напряжения используется компаратор, входы которого -выводы 1 и 2 D1. На вывод 2 через делитель R1-R2 подается опорное напряжение от внутреннего стабилизатора микросхемы (выход стабилизатора, - вывод 16). На вывод 1 подается напряжение с выхода источника питания, пониженное делителем R3-R4-R5. Величина выходного напряжения зависит от соотношения плеч этого делителя, и устанавливается подстроечным резистором R4 (фактически, в пределах от 15-ти до 22-х вольт). Желательно, чтобы резистор R4 был многооборотным, - так его установка будет точнее и стабильнее.

Катушка L1 намотана на кольцевом ферри-товом магнитопроводе внешним диаметром 28мм. Всего 30 витков провода ПЭВ 1,56.

Диод VD2 (диод Шотки) должен допускать прямой постоянный ток не менее 5А.

Транзистор BU278 можно заменить любым другим аналогичным транзистором, например, BUZ21L Транзистор ВС548 можно заменить любым n-p-п транзистором общего применения, например, КТ503.

Микросхему LM3524 желательно выбрать в DlP-корпусе (удобнее паять). Можно заменить такой же микросхемой SG3524, но другого производства.

Резистор R6 - проволочный, мощностью не менее 2W.

Все конденсаторы должны быть рассчитаны на напряжение не ниже 25V.

Налаживание сводится к установке выходного напряжения подстроечным резистором R4. Желательно чтобы R4 был многооборотным. Можно R4 предварительно заменить переменным резистором, а после регулировки измерить его сопротивление. Затем, набрать необходимое сопротивление из постоянных резисторов (путем последовательного или параллельного включения), и установить эту «сборку» вместо R4.

Преобразователь был собран на макетной печатной плате, поэтому схема разводки дорожек не прорабатывалась.

При подключении к автомобильной бортовой сети необходимо строго соблюдать полярность. В противном случае преобразователь выходит из строя. Оптимально -подключение непосредственно к клеммам аккумулятора. В этом случае будет минимум помех, как от преобразователя, так и на преобразователь. Корпус преобразователя должен быть экранированным.

Трудно современному человеку обойтись без компьютера. Сегодня люди не расстаются с электроникой даже в ванной. Что тут говорить о дальних путешествиях, в которых нужно обязательно посмотреть на ноутбуке прогноз погоды, карту дорог и по привычке быть на связи в социальных сетях. Плохо, что батареи ноутбука не хватает больше чем на час, а воткнуть его в гнездо прикуривателя машины напрямую нельзя. Для питания ноут- или нетбука требуется напряжение 19 В, при токе 4–5 А.

Придется собрать повышающий преобразователь с 12 до 19 вольт. Поскольку максимальный ток нагрузки доходит до 5 А, то слабомощным умножителем напряжения не обойтись. Именно мощный индуктивно-импульсный преобразователь 12/19 В , например, собранный по нижеприведенной схеме, нужен для питания ноутбука.

Детали адаптера

Сердцем преобразователя является микросхема КР1006ВИ1 . Частоту переключения в 40 кГц этого RS регистра задает конденсатор С3. В схеме есть защита от снижения входного напряжения. Поскольку если оно упадет ниже 9 В, то дроссель, стремясь сохранить заданное напряжение на выходе, будет работать на пределе, при этом через силовой ключ VT2 потечет аварийно высокий ток.

Также имеется защита от повышения напряжения на выходе свыше 25 В. Ненормальный рост напряжения может наблюдаться при обрыве линии обратной связи в схеме. Что малоопасно для ноутбука, но катастрофично для преобразователя.

Дроссель L 1 индуктивностью 25 мкГн нужно самостоятельно намотать на тороидальном магнитопроводе типоразмера TN27/15/11. Такая катушечка, как на фото, покрытая пластмассовой оболочкой желтого цвета, имеются в любом блоке питания компьютера.

Нужно накрутить всего 9 витков 25 мкГн, при использовании указанной катушки диаметром 27 мм. Для намотки идеально подойдет провод ПЭВ-2 диаметром 1 мм. Его следует равномерно распределить по всему магнитопроводу.

Для выпрямления импульсного выходного напряжения нужен диод Шотки VD 2 и электролитический конденсатор С5 емкостью 100–220 мкФ. Из неисправного компьютерного блока питания можно позаимствовать сборку из двух диодов Шотки типа MBR4045PT, в которой они соединены параллельно. Это очень мощная сборка, рассчитанная на ток до 40 А при низком напряжении до 45 В, поэтому диоды Шотки во время работы преобразователя для ноутбука никогда не нагреются.

В выходном ключе преобразователя для обеспечения большого тока питания необходим мощный полевой транзистор VT 2 , такой как в схеме или можно снять T60N02R с материнской платы.

Все остальные детали адаптера для ноутбука тоже можно заменить отечественными или импортными аналогами.

Настройка преобразователя

Для проведения испытания на выход преобразователя следует подключить гирлянду резисторов, собранных в сумме на сопротивление 5 Ом и мощность не ниже 50 Вт. Теперь можно проверить, удерживает ли схема напряжение в пределах 17–20 В при токе нагрузки 4–5 А.

После такой настройки через адаптер можно будет подключать большинство LCD мониторов, питающихся от 19 вольт. На случай организации кинотеатра в салоне автомобиля.

Сборка устройства

Готовое устройство для машины удобно расположить в корпусе от неисправного компьютерного блока питания. Большинство элементов, расположив на его монтажной плате. Так как исток полевого транзистора VT2 является и его корпусом, то его следует изолировать слюдяной или синтетической пленкой при установке на радиатор.

При полной нагрузке транзистор на радиаторе становится теплым. Охлаждение можно усилить, задействовав имеющийся в компьютерном блоке вентилятор. Такой кулер с завода подключен через терморезистор, установленный вплотную к радиатору. Сопротивление терморезистора при комнатной температуре равно около 400 Ом, с повышением температуры оно уменьшается, и вентилятор начинает вращаться быстрее.

Остается только подсоединить вилку прикуривателя для подключения к бортовой сети автомобиля.

Схема также доступна по адресу //radiokot.ru/circuit/power/converter/45 и на сайте автора //microscheme.blogspot.ru/2011/03/blog-post.html

Автомобильный бездроссельный БП на IRS2153 для ноутбуков и мобильников Внешний USB-разъем в автомагнитоле Подключаем мобилку к магнитоле USB розетка в машину своими руками