Что такое динамо машина. Динамомашины и "генераторы с ручным приводом"

Генератор, позволяющий получить электрическую энергию благодаря вращению (механической энергии), именуется динамо-машиной. Постоянный ток, ею вырабатываемый, в связи со своими качествами применяется в быту не так часто, как переменный. Все электростанции оснащены гигантскими генераторами переменного тока (альтернаторами). Несмотря на это, динамо-машина остается актуальным приспособлением, которое хорошо служит в некоторых электротехнических областях, например, при зарядке аккумуляторов. Поэтому небольшой генератор, собранный своими руками, всегда найдет себе применение.

Кто изобрел динамо-машину и как она устроена?

В 1831 году английский физик Фарадей обнаружил необычное электромагнитное явление. В медном проводе во время вращения между магнитными полюсами возникало электромагнитное поле. Именно оно возбудило движение электронов по проводнику. На основе исследований физик сформулировал закон электро-магнитной индукции. Проводником служила медная проволока, накрученная на стержень из металла, обладающий магнитным свойством. Когда магнитные частицы в стержне располагались в соответствии с полюсами, он превращался в магнит и притяги-вал к себе металлические предметы. Чтобы намагнитить стержень, можно использовать катушку или постоянный магнит. Эффект возникнет при силь-ном вращении одного электромагнита вокруг другого.

В том же году появился прибор для преобразования электрической энергии в механическую. Первые электродвигатели напоминали паровые машины: только вместо цилиндров устанавливали электромагниты, вместо поршней - металлические якоря.

В 1834 году русский академик Борис Якоби создал первый электродвигатель с вращающимся якорем. Через 4 года академик применил усовершенствованный электромотор на первой в мире моторной лодке. Первый в мире генератор переменного тока был построен Павлом Яблочковым. А поистине революционным стало изобретение другого русского ученого М. Доливо-Довольского - генератор трехфазного тока.

Динамо-машина своими руками, ее элементы

Для того чтобы построить динамо-машину, потребуются такие основные элементы, как корпус, вращающийся якорь, коллектор, щеткодержатель, щетки, медная проволока с изоляцией.

Рассмотрим подготовку каждого элемента в отдельности.

Устройство динамо-машины

  • Корпус

Существуют разные варианты изготовления корпуса. Для него подойдет консервная банка, отрезок трубы (диаметр 100 мм). Во-первых, надо вырезать дно банки и утяжелить корпус. Для этого с внутренней или наружной стороны банки очень плотно в несколько рядов навернем полоску из железа такой же ширины. Затем приклепываем или припаиваем полоску к корпусу.

Во-вторых, из жести или железа изготавливаем сердечники для электромагнитов и башмаки для них. Берем полоски жести по ширине корпуса, изгибаем, накладываем друг на друга, скрепляем железной проволокой и припаиваем их по бортам. К отверстиям в корпусе, расположенным напротив друг друга, крепим сердечники.

С помощью шурупов приворачиваем корпус к колодке (деревянной или металлической). В корпусе делаем две подшипниковых полоски (латунь или толстая жесть, размер 110х20 мм) и стойку (80х20 мм) для закрепления якоря. Полоски спаиваем крестом, в центре делаем отверстие по диаметру оси. Такое же отверстие в стойке в 10 мм от конца. В отверстия подшипников можно впаять медные трубочки (10-15 мм с диаметром 8 мм). К корпусу первый подшипник припаиваем концами полос, после система выгнется наружу.

  • Вращающийся якорь

Изготавливать якорь надо тщательно, так как от него во многом зависит, как будет работать динамо-машина. Можно собрать якорь из жестяных пластин. Толщина всех пластин должна быть равна толщине корпуса (50 мм), при их изготовлении требуется особая точность. Из железа придется вырезать примерно 120 кругов (по 46 мм в диаметре). Каждый круг делим на восемь секторов с помощью циркуля, делаем разметку через центр круга, в центре кругов проводим по две окружности диаметром 8 и 38 мм. На пересечении большой окружности с линиями секторов проводим еще круги по 8 мм. На всех круглых пластинах, там, где расчертили окружности, с точностью просверливаем восемь отверстий по 8 мм.

Плотно скрепляем пластины гайками и надеваем на ось, должен получиться якорь с круглыми продольными пазами. Острые углы в пазах закругляем напильником.

Изготовление коллектора и щеткодержателя

При сборке динамо-машины, в частности коллектора и щеткодержателей, требуется внимание и аккуратность.

  • Коллектор

Коллектор можно изготовить из трубки (медь, латунь) или собрать из пластин. Потребуется трубка диаметром 20-25 мм и длиной 25—30 мм, которая распиливается на 4 равные части. В пластинах просверливаются по два двухмиллиметровых отверстия.

Затем вырезаем цилиндр (диаметр 20-25 мм, длина 25 мм) из фибры или эбонита, подойдет и сухое дерево. В центре цилиндра делаем отверстие, чтобы он плотно мог войти на ось якоря. Пластинки крепим к цилиндру с помощью мелких шурупов, каждый раз оставляя между ними пространство в 1-2 мм. Можно использовать скрутки из проволоки и изоляционную ленту. Шурупы не должны касаться оси, иначе будет замыкание. Зазоры между пластинами заполняем канифолью.

  • Щеткодержатель и щетки

Щеткодержатель со щетками применяется для снятия напряжения в коллекторе. Щетки должны выдвигаться и поворачиваться вокруг оси якоря, чтобы менять силу и угол нажима на коллектор. Основание толщиной 10 мм изготовим из фибры, эбонита или пропарафиненного дерева. Просверлим в нем три отверстия, чтобы для двух крайних подошли болты. Берем болты из меди или радиоконтакты по 35 мм. Болтики, закрепляющие щетки, вкручиваем с гайками для зажима.

Отверстие в центре должно быть равно диаметру трубки из меди, которая использовалась для первого подшипника в корпусе. Напротив центрального отверстия в торце колодки просверливаем сквозное отверстие и делаем нарезку под крепящий винт. Берем винт (для дерева - шуруп) с прорезью или гранями на головке. Делаем отверстие чуть меньше диаметра винта, вворачиваем винт. Сначала на 2-3 оборота ввернуть, потом вывернуть, повторяя до тех пор, пока он не будет свободно входить на три оборота. Затем точно также винтом обрабатываем следующий проход.

Делаем подшипниковую стойку, в верхнем конце которой просверливаем отверстие, вставляем отрезок медной трубки и припаиваем. Щетки можно сделать разными способами, из медных, латунных пластин или приготовить угольные щетки. Это могут быть пластины длиной 40-50 мм с сечением 10-15 мм. На конце щетки просверливаем продолговатое сквозное отверстие длиной 20 мм под болтики. Такое отверстие позволит менять нажим, приближая щетки к коллектору. Крепим щетки шайбами. Чтобы щетки плотно касались коллектора, затачиваем их концы наискось.

Обмотка

Для обмотки будем использовать медную проволоку с бумажной изоляцией сечением 0,5-0,8 мм. Необходимо приобрести полкилограмма проволоки, толщина которой будет влиять на напряжение и силу тока. Например, при обмотке проволокой 0,5 мм будет вырабатываться 25 вольт при силе тока в 1 ампер, если взять проволоку 0,8 - 8 вольт при силе в 3 ампера. Перед началом работ проволоку делим на две части. Для обмотки электромагнита потребуется 450 г провода 0,5 и 60 г для обмотки якоря. Если купили проволоку 0,8, для электромагнита отложим 430 г, а для якоря - 70 г.

Сборка динамо

Динамо-машина своими руками собирается в несколько этапов:

  1. Для основания подготовим доску размером 150х200 мм, толщиной 30 мм. Просверлим два отверстия с краев кольца электромагнитов.
  2. Крепим корпус к основанию двумя шурупами так, чтобы электро-магниты расположились на одной горизонтальной линии напротив друг друга.
  3. К бо-кам корпуса, чтобы он прочно сидел, подкладываем деревянные брусочки и привинчиваем их к основанию.
  4. Затем через подшипник на корпусе пропускаем свободный конец оси якоря. Вставляем его на место между электромагнитами.
  5. На подшипник подшипниковой стойки с внутрен-ней стороны надеваем щеткодержатель со щетками и вставляем конец оси якоря с коллектором. На коллектор предварительно должна быть надета толстая металли-ческая шайба или кольцо из проволоки.
  6. Устанавливаем якорь так, чтобы он при вращении между электромагнитами, не задевал их и находился от них на одном расстоянии. Стойка крепится на основание двумя шурупами.

Регулировка динамо-машины

  • Закрепляем щетки так, чтобы они слегка касались коллектора и сильно не затормаживали его вра-щение.
  • Проверим правильность соединений, отсутствие обрывов и замыканий. Подключаем к механизму батарею в 15-20 вольт. Если мотор работает, якорь быстро вращается, значит, динамо-машина своими руками собрана правильно.
  • После проверки динамо-машину соединяем с при-водом, например от ножной швейной машины. К щеткам присоединяем напря-жение от батареи в 10 вольт, чтобы намагнитить электромагниты. Через минуту батарея должна отключиться, тогда начинаем быстро вращать якорь с помощью привода. К проводам от щеток подключаем вольтметр или лампу в 12 вольт. Если все собрано правильно, вольтметр будет показывать напряжение, а лампочка - накаливаться.
  • С помощью равномерного вращения якоря надо слегка повернуть щеткодержатель в сторону вращения якоря, тогда щетки будут меньше искрить и лучше снимать напряжение. Опытным путем отрегулируем установку щеток.

Динамо-машина для велосипеда

Небольшой генератор для велосипеда устанавливается на боковой стенке покрышки. Он позволяет заряжать аккумуляторы мобильников, приемников и других устройств, зажигает фары. Бутылочная динамо-машина называется еще и боковым динамо. При езде покрышка приводит в движение ролик динамо, вращающий электрогенератор.

Для велосипедного генератора можно взять динамо-втулку, динамо-каретку. Подойдет и бесконтактная динамо-машина. Телефон она сможет зарядить вполне успешно.

  • Бутылочный генератор во время работы создает сопротивление при езде и требует больше усилий для прокручивания, чем динамо-втулка. Правильная регулировка поможет уменьшить сопротивление.
  • Бутылочная динамо-машина для велосипеда изнашивает покрышку в отличие от динамо-втулки.
  • При влажности ролик динамо-бутылки возможно будет проскальзывать по покрышке, что существенно снизит количество вырабатываемой энергии.
  • Для динамо-втулки не требуется хорошее сцепление и герметизация. Они не издают шума в отличие от динамо-машин.

Эксплуатация динамо-машины для велосипеда

Тщательная установка динамо очень важна, при этом надо учесть угол, высоту и давление. Для запуска велосипедная динамо-машина бутылочного типа перемещается и подсоединяется, а динамо-втулка просто включается вручную или автоматически.

Эксплуатировать динамо надо строго по инструкции.

  1. Перед тем, как крутить педали, проверяем вольтметр. Он должен показывать напряжение (12-13).
  2. Выбираем режим низкой мощности, включаем генератор, должна загореться лампочка индикатора.
  3. Крутим педали, постепенно увеличивая скорость, до включения генератора. Лампочка погасла, на вольтметре значение 13-14. Крутить педали надо быстро, чтобы схема могла поддерживать мощность.
  4. Вело динамо-машина работает более эффективно при высокой мощности. При тяжелых нагрузках лучше запускать генератор на низкой мощности, а после отключения нагрузки переключить на высокую.

Динамо-зарядник

В полевых условиях всегда пригодится простая «крутилка», динамо-машина для зарядки телефона. Актуальными являются зарядники со встроенным аккумулятором. Встречаются механические зарядники, также не занимающие много места. Многие современные «крутилки» снабжены фонариками.

Данные устройства вполне успешно заряжают мобильные телефоны. Например, при вращении ручки 2-3 оборота в секунду можно получить значение коэффициента от 0.65 до 2.5. Пару минут покрутил и можно говорить по телефону от 2 до 5 минут. Все зависит от модели и условий приема. Ручная динамо-машина не сможет снабжать мощный смартфон с большим дисплеем. Механическая зарядка обеспечит результат в связке с простым телефоном вместе с гарнитурой hands-free.

Зарядка динамо-машина сработает результативно при полностью разрядившемся аккумуляторе, но повысить заряд телефона кручением рукоятки можно только до 50%. Когда аккумулятор разряжен только наполовину, «крутилка» становится бесполезной игрушкой. Если в инструкции указан максимальный ток зарядки - 400 mA с мощностью 2 Вт, то дополнительную энергию выжать не удастся даже при быстром вращении рукоятки.

Мощный генератор своими руками

Мощный генератор электроэнергии можно собрать, используя старый велосипед без восьмерок на заднем колесе. Подойдет 28-дюймовое колесо и передняя звездочка на 52 зуба, но возможны и другие варианты, например, 26-дюймовое и звездочка на 46 зубов. В первую очередь снимаем ненужные детали: переднее колесо, покрышки, переключатель передач, тормоза. Устанавливаем велосипед на подставку.

Генератор должен быть автономным с двумя большими клеммами и одной маленькой. Две большие клеммы соединяем вместе, образуя плюс, а маленькую - с индикаторной лампочкой. Клемму заземления соединяем с корпусом (минус). Чистим генератор, снимаем с него вентилятор охлаждения. Закрепляем генератор на кронштейне за сидением, шпиндель должен находиться снаружи на 10-12 см от обода. Подбираем ремень, желательно зубчатый, окружностью примерно 82 дюйма. Для колес по 26 дюймов подойдут ремни A78, а для 27-дюймовых колес - A80.

Для регулировки натяжения генератора переменного тока используем натяжитель пружинного типа. Ремень не надо затягивать сильно, так как вращающий момент довольно низок. На руль закрепляем вольтметр, выключатель и лампочку. Если в доме есть дети, необходимо защитить движущиеся частям механизма, чтобы исключить возможность травматизма.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В ведение

Очень часто появляется необходимость найти альтернативный источник питания вместо обычной пальчиковой батарейки. Батарейки стоят довольно дорого и заканчиваются очень быстро. А главное очень часто они нужны тогда, когда нет возможности их сразу приобрести.

Началу нашего эксперимента положила простая необходимость в электропитании напольных весов. Дело в том, что батарейки, от которых прежде работали весы, заканчивались очень быстро, требовался иной источник питания для большего удобства. Одним из вариантов стало USB, но потом пришла идея: почему бы не попробовать запитать весы динамо-машиной. Этот тип источника электрической энергии незаслуженно забыт в настоящее время.

И тут возникло множество вопросов: Как же устроена динамо-машина? На чем основывается принцип её работы? Можно ли вообще собрать динамо-машину в домашних условиях? Что для этого нужно? Будет ли такой вариант питания эффективным?

Такая задача активно стимулировала наш интерес к приобретению новых знаний об окружающем мире, физических явлениях и электрическом токе, в частности. Так проблема бытового уровня положила начало серьезного эксперимента.

Работа проведена с использованием специальной литературы, фотоматериалов, справочной информации, полученной со специализированных сайтов в сети Интернет. В результате проекта собрана информация об особенностях устройства динамо-машин, принципе их работы, отличительных особенностях разных типов прибора. На основании проведенного эксперимента сделаны выводы о возможности сборки и использовании динамо-машин дома.

Проведенный опыт был интересен и познавателен, он способствовал развитию навыков работы со схемами, желания узнавать окружающий нас мир с его физическими законами и явлениями, появлению интереса школьников к научной деятельности и глубокому изучения вопросов физики.

Цель данной работы - доказать возможность изготовления и использования динамо-машин в домашних условиях и сравнить работу прибора от динамо-машины и от обыкновенного источника питания.

Задачи исследования

Собрать динамо-машину с электрическим потенциалом в 3,5 вольт в домашних условиях.

Сравнение работы приборов от созданного генератора тока с их же работой, но от альтернативного источника питания.

Решение задач

Изучение специальной литературы и сбор необходимых компонентов для изготовления динамо-машин.

Поочередное подключение динамо-машины и компьютера к электронным весам и сравнение точности показаний весов с помощью взвешивания тел известной массы.

Этапы работы:

Подбор и изучение литературы о генераторах постоянного тока (динамо-машинах). Поиск ответа на следующие вопросы: что такое динамо-машина, история создания и области ее применения.

Подбор интересных схем и необходимого оборудования для изготовления динамо-машины.

Изготовление и проверка в работе изготовленных моделей динамо-машины.

Сравнение работы домашних приборов (напольные весы) от обычного источника питания и от динамо-машины.

Глава 1. Динамо-машина: определение, устройство, история создания, сферы применения.

Динамо-машина, или генератор электрического тока, — это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую.

Динамо-машина состоит из катушки с проводом (ротора), вращающейся в магнитном поле, создаваемом статором, или наоборот: вращается магнит, а катушка неподвижна. Энергия вращения, согласно закону Фарадея преобразуется в переменный ток, но поскольку в XIX веке не умели практически использовать переменный ток, то они использовали щеточно-коллекторный узел для того, чтобы инвертировать изменяющуюся полярность (получить постоянный ток на выходе). В результате получался пульсирующий ток постоянной полярности.

В 1827 году Аньошем Йедликом была изобретена первая динамо-машина. Он сформулировал концепцию динамо на шесть лет раньше, чем она была озвучена Сименсом, но не запатентовал её.

В наше время термин динамо используется в основном для обозначения небольшого велосипедного генератора, питающего велосипедную фару, а также небольшого генератора, встроенного в электрические фонарики — т.н. электродинамические или самозарядные фонари, способные работать автономно без батареек или аккумуляторов и не нуждающиеся в подзарядке от стационарной электросети 220 В или в смене элементов питания, и способные работать неограниченно долгое время в полевых условиях.

В современное время динамо также используется в некоторых видах тренажёров серии для неоновой подсветки и также в гироскопических тренажёрах для кистей рук.

Глава 2. Проектирование

Первый опытный образец динамо-машины было решено сконструировать из самых доступных материалов и подручных инструментов:

Электромотор постоянного тока (от детской игрушки)

Фрагменты наличника

мебельные уголки

шкив диаметром 80 мм (сборный из дерева и гетинакса)

ручка из металлической пластины с отверстиями для крепления

приводящий ремень из резины

Общий вид конструкции см. Рисунок.1.

Рисунок 1

В соответствие со Схемой 1, крутящий момент с ведущего вала, на котором были закреплены шкив большого диаметра и рукоятка для его вращения, через приводной ремень передавался на шкив маленького диаметра, закрепленного непосредственно на валу моторчика.

Запуск динамо-машины и замер генерируемого тока позволил сделать следующие выводы:

Да, электромотор постоянного тока можно использовать в качестве генератора тока.

Первые пуски дали неутешительный результат - отдача устройства не превысила 0.6 вольт при чрезвычайно высоких физических усилиях. Для питания современных бытовых приборов это явно недостаточно.

Повышение эффективности в такой схеме требовало замены ведущего шкива на другой гораздо большего диаметра или оснащение её сложным редуктором-мультипликатором. Таким образом, первая попытка создания рабочего образца прибора окончилась неудачей.

Так как подходящих материалов для совершенствования первого образца не нашлось, было принято решение взять за основу нового прототипа механическую часть неисправного компьютерного CD-привода, также имеющего мотор постоянного тока и редуктор для передачи момента от него до рейки на лотке для дисков.

Для создание второго образца динамо-машины было использовано:

Механизм выдвижного лотка CD дисков в сборе

Микросема диодного моста

Резистор 500 Ом

Светодиод

Конденсатор емкостью 10000 микро Ф

Кабель электрический с разъемом USB тип А гнездо.

Общий вид второго варианта динамо-машины показан на Рисунке 2.

В этой новой схеме сборки лоток, - наоборот, - выступил в качестве рукоятки, придающей вращение нашему генератору. Этот вариант оказался гораздо удачнее - тестер замерил более 5 вольт на клеммах моторчика.

Рисунок 2

Далее в соответствие со Схемой 2, к выводам электромотора был припаян диодный мостик. Дело в том, что возвратно-поступательные движения лотком в нашем устройстве приводят к генерации переменного тока. А диодный мост - электронное устройство, служащее для его выпрямления. Далее мы смонтировали конденсатор большой ёмкости для сглаживания бросков напряжения и светодиод для визуализации наличия напряжения на контактах разъёма подключения потребителей.

Запуск второго образца динамо-машины показал отличные результаты. При равномерном движении лотка значения вырабатываемого тока соответствовало необходимому уровню (см. Рис.3) для питания бытовых напольных весов, что позволило перейти ко второй части эксперимента - испытаниям.

Рисунок 3

Глава 3 Испытания

Проверка работы динамо-машины была проведена на бытовых напольных весах. Нам потребовались гантели (m=12.5 кг) и человек (неизвестной массы).

Для большей точности, взвешивание каждого тела производилось по 5 раз, для последующих сравнений использовались средние показания (см. Таблица 1).

Алгоритм взвешиваний:

Сначала подключаем весы через USB-разъём к сети (порт компьютера) и взвешиваем первое тело - гантели,

Затем переключаем весы к динамо-машине, подаем питание и производим измерения.

Повторяем операции по взвешиванию с человеком.

Таблица 1

Питание весов:

от сети (С),

от динамо-машины (Д)

Показания весов (в кг)

Первые взвешивания гантелей известной массой 12,5 кг дали показания с небольшой погрешностью в обоих вариантах взвешивания, не зависимо от вида питания. Результаты: масса 12,6 кг (см. рис.4 и 5)

Рисунок 4

Рисунок 5

Результаты взвешивания человека (его точная масса заранее нам неизвестна) показали: масса тела = 54.0 кг в обоих случаях взвешивания. (см. рис.6 и 7)

Рисунок 6

Рисунок 7

Была произведена проверочная третья серия взвешиваний - человека с гантелями в руках. Результаты одинаковы в обоих вариантах взвешиваний.

По итогам второй части эксперимента можно сделать вывод, что прибор (весы) работает от генератора тока верно и способен давать точные показания, равно как и при работе от эталонного источника питания, за который мы приняли компьютерные 5 вольт.

Таблица 2

Динамо-машина

компоненты

стоимость

CD -ROM неисправный

Резистор

Мост диодный

Конденсатор

USB удлинитель дл. 1 м

Итого:

307 руб.

Таблица 3

Выводы

Динамо-машина может являться альтернативным экологичным и долговечным источником питания бытовых приборов.

Возможно создание мобильных весов за счет переносного источника питания.

Этот опыт стимулирует развитие интереса школьников к научной деятельности и разработке новых экологичных приборов.

Список литературы

http://cxem.net/house/1-267.php видео «Динамо машина своими руками»

http://tehnojuk.ru/tehno/elektro/dinamo

А.В. Перышкин, Н.А. Родина, «Физика.8класс», Москва «Просвещение», 1989 г.


Сейчас много цифровой техники выходит из строя, компьютеры, принтеры, сканеры. Время такое - старое заменяется новым. Но вышедшая из строя техника ещё может послужить, хоть и не вся, но отдельные её части уж точно.
Вот, к примеру, в принтерах и сканерах используются шаговые двигатели различных размеров и мощностей. Дело в том, что они могут работать не только как двигатели, но и как генераторы тока. Фактически это четырехфазный генератор тока уже и есть. И если приложить к двигателю даже небольшой крутящий момент - на выходе появиться значительно большое напряжение, которого вполне хватит, чтобы зарядить маломощные аккумуляторы.
Я предлагаю сделать механический динамо фонарик из шагового двигателя принтера или сканера.

Изготовление фонарика

Первое что нужно сделать это найти подходящий шаговый двигатель небольших размеров. Хотя, если вы хотите сделать фонарик побольше и помощней - берите большой двигатель.


Далее мне понадобиться корпус. Я взял готовый. Вы же можете взять мыльницы, или вообще склеить корпус самостоятельно.


Делаем отверстие под шаговый двигатель.


Устанавливаем и примеряем шаговый двигатель.


От старого фонарика берем переднюю панель с отражателями и светодиодами. Все это можно конечно сделать и самому.


Выпиливаем паз под фару.


Устанавливаем светило от старого фонарика.


Делаем вырез под кнопку и устанавливаем ее в паз.


На свободном участке размещаем плату, на которой будут размещаться электронные компоненты.

Электроника фонарика

Схема

Чтобы светодиоды светили им нужен постоянный ток. Генератор вырабатывает переменный, поэтому нужен четырехфазный выпрямитель, который будет собирать ток со всех обмоток двигателя и концентрировать его в одной цепи.

Далее полученный ток будет заряжать аккумуляторы, который будут хранить полученный ток. В принципе, можно обойтись и без аккумуляторов - используя мощный конденсатор, но тогда свечение будет только в момент кручения генератора.
Хотя есть ещё одна альтернатива - использовать ионистор, но для его зарядки потребуется значительное время.
Собираем плату по схеме.



Все части фонарика готовы к сборке.

Сборка динамо фонаря

Прикрепляем плату на саморезы.


Ставим шаговый двигатель и припаиваем его провода к плате.


Подсоединяем провода к выключателю и фаре.


Вот почти собранный фонарь со всеми частями.

Рис. 1. Диск Фараде я

В предыдущих статьях данного цикла рассматривались первые электрические двигатели, созданные в начале XIX века с питанием от единственного известного источника – гальванической батареи . Низкая экономическая эффективность такого электрохимического источника, препятствующая замене паровых двигателей электрическими, заставляла изобретателей искать другие, электромеханические способы генерации электроэнергии. В данной статье отражен процесс создания электрогенераторов постоянного тока, в результате которого было открыто явление самовозбуждения за счет положительной обратной связи, называемое принципом динамо.

Первый электромеханический генератор был предложен Фарадеем в 1832 г. сразу после открытия им закона электромагнитной индукции (рис. 1) . Диск Фарадея содержит: статор в виде подковообразного магнита – 1 и медный диск (ротор) – 2, снабженный подвижными контактами на оси и ободе.

При вращении диска в магнитном поле в нем наводится ЭДС постоянного знака, вызывающая индукционные токи, текущие по правилу правой руки радиально, т. е. между осью и ободом (в данном случае, снизу вверх). По правилу Ленца индукционные токи создают магнитный поток, препятствующий потоку магнита, т. е. направленный вдоль оси вращения диска. Это единственный известный униполярный генератор постоянного тока, применяемый для выработки больших токов до сих пор. Остальные генераторы постоянного тока являются, по существу, генераторами переменного тока с выпрямителем (коммутатором) на выходе.

Рис. 2. Генератор Пикси

Первый генератор переменного тока был построен во Франции мастером Ипполитом Пикси (Hippolyte Pixii) в том же 1832 г. . За свою короткую жизнь в 27 лет Пикси создал много научных приборов, включая дилатометрический термометр и вакуумный насос. Генератор Пикси показан на рис. 2, где обозначены: 1 – статор с двумя катушками, включенными последовательно, 2 – ротор с постоянным магнитом, 3 – щеточный коммутатор (выпрямитель). Силовые линии вращающегося магнита пересекают обмотку катушек, наводя в них ЭДС, близкую к гармонической. Идея катушек и вращающегося магнита принадлежит изобретателю, приславшему письмо Фарадею, подписанное латинскими инициалами P.M. Вероятное имя изобретателя – Фредерик Мак Клинток (Frederick Mc-Clintock) – долгое время оставалось неизвестным . Фарадей незамедлительно опубликовал это письмо в научном журнале. Однако это устройство генерировало переменный ток, тогда как в начале XIX века применялся только постоянный ток. Поэтому Пикси по совету Ампера снабдил его щеточным коммутатором. Генератор Пикси использовался Э. Х. Ленцем для доказательства открытого им в 1833 г. принципа обратимости электрической машины. Однако еще долго двигатели и генераторы развивались по отдельности.

При создании высоковольтного дистанционного взрывателя морских мин в 1842 г. Якоби предложил поместить магниты на статоре, а обмотку на роторе, что повысило компактность генератора. Генератор Якоби представлен на рис. 3 , где обозначены: 1 – статор с двумя постоянными магнитами, 2 – вал, 3 – якорь (ротор с обмоткой), 4 – коммутатор, 5 – мультипликатор, т. е. повышающий редуктор для увеличения скорости вращения ротора.

Рис. 3. Генератор Якоби

Аналогичную конструктивную схему имел генератор, предложенный английским инженером Фредериком Холмсом (Frederick Holmes) для питания запатентованной им дуговой лампы. Для серийного производства генераторов в 1856 г. была создана компания «Альянс» . Вид генератора представлен на рис. 4, где: 1 – статор с постоянными магнитами; 2 – ротор с обмоткой (якорь); 3 – центробежный регулятор, 4 – механизм сдвига щеток.

В нем использовался центробежный регулятор Уатта для автоматического поддержания выходного напряжения путем сдвига щеток с нейтрали при изменении нагрузочного тока, что обеспечивало компенсацию реакции якоря. Генератор имел 50 постоянных магнитов, развивал мощность 10 л.с. при весе до 4 тонн. Всего было выпущено более 100 генераторов «Альянс», применявшихся, помимо дуговых прожекторов маяков, и в гальванопластике.

Рис. 4. Генератор «Альянс»

В эксплуатации у машин с постоянными магнитами обнаружился неприятный недостаток снижения выходного напряжения из-за постепенного размагничивания магнитов от вибрации и старения. Другим недостатком возбуждения от постоянных магнитов была невозможность регулирования их магнитного потока для стабилизации генерируемого напряжения. Для борьбы с этими недостатками предлагалось применить электромагнитное возбуждение, обеспечивающее к тому же, как отмечалось в статье , большую компактность. Так, преуспевающий английский изобретатель Генри Уайльд (Henry Wilde) получил в 1864 г. патент на генератор с отдельным маломощным возбудителем на постоянном магните, установленном на общем валу с генератором . Уайльд не имел университетского образования, начинал свою карьеру учеником механика, но ему удалось наладить производство своих генераторов для гальванопластики. Тем не менее, становилось ясно, что наличие постоянных магнитов в генераторах – серьезный тормоз развития телеграфии и электрического освещения.

Кардинальное решение проблемы появилось после открытия возможности самовозбуждения генераторов, названного Сименсом динамоэлектрическим принципом, или принципом динамо . Идея самовозбуждения состоит в том, что – как показано на рис. 5 – начальный поток возбуждения при пуске машины создается остаточной намагниченностью магнитопровода, где напряжение генератора снимается с обмотки якоря Я, а возбуждение машины выполняется либо обмоткой ОВ1, включенной последовательно с нагрузкой R н, либо обмоткой ОВ2, включенной параллельно якорю через регулировочный резистор R (так называемое шунтовое возбуждение). Далее поток возбуждения увеличивается за счет положительной обратной связи от генерируемого тока.

Рис. 5. Схема генератора с самовозбуждением

Одним из первых на возможность самовозбуждения генератора указал в патенте 1854 г. датский инженер и организатор железнодорожного сообщения Сорен Хиорт (S?ren Hjorth). Однако, опасаясь слабости остаточной намагниченности, он дополнил генератор постоянными магнитами. Этот генератор Хиорта так и не был реализован. Независимо от Хиорта идею самовозбуждения высказал в 1856 г. профессор Будапештского университета Аньеш Йедлик (?nyos Jedlik). Он также предложил один из первых электродвигателей, описанный в статье . Однако Йедлик своих изобретений не патентовал и сведения о них публиковал весьма скупо, поэтому его новаторские предложения остались незамеченными.

Практически идея самовозбуждения была реализована лишь через десять лет в одно и то же время несколькими изобретателями. В заявке на патент в декабре 1866 г. инженер английской телеграфной компании, ученик Фарадея Самюэль Варлей (Samuel Alfred Varley) предложил схему генератора, аналогичного генератору Якоби, в котором, однако, обмотка возбуждения заменяла постоянные магниты. Схема генератора показана на рис. 6, где: 1 – электромагниты возбуждения, 2 – якорь, 3 – коммутатор, 4 – добавочный регулировочный резистор. Перед пуском сердечники возбуждения намагничивались постоянным током.

Рис. 6. Генератор Варлея

Через месяц, в январе 1867 г., в Берлинской Академии наук был представлен доклад известного немецкого изобретателя и промышленника Вернера Сименса (Werner Siemens) с подробным описанием генератора с самовозбуждением, названного им динамо-машиной. Перед пуском генератор включался как двигатель для намагничивания возбуждения. Впоследствии Сименс наладил широкий промышленный выпуск таких генераторов в Германии.

В феврале того же 1867-го г. известный английский физик Чарльз Уитстон (Charles Wheatstone) запатентовал и продемонстрировал генератор с шунтовым возбуждением (рис. 5). Владелец мастерской музыкальных инструментов, перенявший дело от своего отца, впоследствии профессор Королевского колледжа King’s College в Лондоне, Уитстон известен также своими изобретениями метода измерения сопротивления (мост Уитстона), однофазного синхронного электродвигателя, музыкального инструмента концертино, стереоскопа, хроноскопа (электрического секундомера) и усовершенствованного вида телеграфа Шиллинга.

В печати возникла дискуссия о приоритете данного технического решения, на который претендовали также Уайльд и Хиорт. Следует отметить, что существует три вида приоритета: научный, патентный и промышленный. Научный приоритет принадлежит ученому, впервые опубликовавшему или публично продемонстрировавшему какое-либо устройство, эффект или теорию. Промышленным приоритетом владеет лицо или компания, впервые наладившие производство изделия и его широкое внедрение. Например, при открытии радио научный приоритет принадлежит Попову, а патентный и промышленный – Маркони.Относительно генератора с самовозбуждением следует признать патентный приоритет за Варлеем, научный – за Йедликом и Сименсом, а промышленный – за Сименсом. Уитстону же принадлежит приоритет в частном, хотя и весьма важном, техническом решении – шунтовом возбуждении.

Дальнейшее улучшение характеристик динамо-машины было связано с изменением конструкции ее якоря путем применения в 1867 г. бельгийским электротехником Зиновием Граммом (Zenobe Gramme) кольцевого якоря, а затем внедрением барабанной намотки, предложенной в 1872 г. Гефнером Альтенеком (Hefner Alteneck), ведущим конструктором компании Сименс-Гальске . После этого электродвигатели и генераторы практически приняли современный вид. Однако к концу XIX века в связи с широким внедрением систем переменного тока основная доля электроэнергии на гидро- и тепловых электростанциях вырабатывалась уже генераторами переменного тока.

Рис. 7. Модель геодинамо

Что касается самого принципа динамо, то о нем снова вспомнили уже в ХХ веке для объяснения причин земного магнетизма, которое Эйнштейн в 1905 г. назвал одной из пяти главных загадок физики того времени . До сих пор окончательного ответа, подтвержденного компьютерным моделированием или физическими экспериментами, не получено, но наиболее популярной является теория, называемая гидромагнитным динамо (геодинамо). Еще со времен Уильяма Гильберта (конец XVI века) установлено, что Земля – это гигантский магнит, силовые линии которого направлены от южного полюса к северному. Согласно уравнениям Максвелла, магнитные потоки могут создаваться только токами, поэтому естественно было предположить, что Земля – это электромагнит, токи которого текут в плоскостях, параллельных экватору, а сердечником служит твердое ферромагнитное ядро Земли, показанное на рис. 7, с предполагаемым вертикальным расположением оси вращения Земли. Это железоникелевое ядро (1) диаметром около 1200 км окружено жидкой оболочкой (2) из тех же металлов толщиной 2300 км, за которым следуют горные породы мантии и коры Земли.

Если предположить, что вследствие вращения Земли (3) в жидкой оболочке ядра образуются концентрические течения в плоскостях, параллельных экватору (на рисунке не показаны), то в них могут индуктироваться токи за счет пересечения силовых линий (4) магнитным потоком от твердого ядра – как в генераторе Фарадея. Однако твердое ядро принципиально не может быть намагниченным, поскольку его температура, вызванная термоядерными реакциями, выше 5000 о С (как на поверхности Солнца), а все ферромагнитные материалы теряют свои магнитные свойства выше точки Кюри (около 750 о С). Кроме того, ученые не могли предложить разумного объяснения причин образования таких концентрических течений. Поэтому в настоящее время принята более сложная модель, называемая конвективным геодинамо.

Температура поверхности жидкого ядра на границе с мантией (5) примерно на 600 о С ниже температуры твердого ядра, что вызывает радиальные конвективные потоки жидкости (6), которые под действием кариолисовых сил, вызванных вращением Земли, закручиваются в вихри (7), ось вращения которых совпадает с осью вращения Земли. Далее в этих жидких вихрях, аналогично диску Фарадея, индуктируются токи, создающие магнитные потоки (4) вдоль оси вращения Земли.

Более сложным является вопрос о первоначальном образовании магнитного поля Земли. В 1919 г. ирландский физик и математик Джозеф Лармор (Joseph Larmor), выпускник Кембриджского университета, один из создателей теории электрона и основателей релятивистской теории, предложил для его решения идею самовозбуждения, аналогичного процессу в динамо-машине. Необходимая первоначальная намагниченность мантии Земли могла быть вызвана магнитным полем Солнца, направленным вдоль оси вращения. Затем за счет механизма положительной обратной связи в вихрях жидкости постепенно нарастали токи, намагничивающие мантию, пока локальный нагрев жидкого ядра за счет омических потерь не начал разрушать конвективные потоки и магнитное поле Земли не приняло устойчивый современный уровень .

Одним из популярных технических приспособлений является динамо на велосипед. Именно о том, какие существуют типы этого устройства, для чего используется и их особенностях.

Типы динамомашин для велосипеда

Динамо для велосипеда – это электрический генератор, который вырабатывает энергию для питания электроприборов установленных на велосипеде, например фар или блока питания для навигатора.

На сегодняшний день широкое распространение получили два вида динамомашин для велосипеда, а именно: бутылочная динамка и динамо втулка.

Вне зависимости от типа, оба они генерируют электрическую энергию за счет вращения магнита внутри катушки. Таким образом, в велосипедных динамо машинах якорь является неподвижным элементом, а статор вращается.

Этот вид получил свое название за внешнее сходство с обычной бутылкой. Бутылочная динамо машина для велосипеда была наиболее распространена у нас в стране во времена советского союза. Она имеет неоспоримые достоинства, в число которых входит:

  • Простота установки и демонтажа;
  • Возможность отключения;
  • Невысокая цена.

В то же время, для бутылочного типа свойственны недостатки, которые в некоторых случаях делают ее установку нежелательной или вообще невозможной. К ним необходимо отнести:

  • Установка влечет появление ассиметричной массы на вилке;
  • Повышенная шумность при работе;
  • Относительно малая выходная мощность;
  • Сопротивление движению;
  • Снижение эффективности при неблагоприятных погодных условиях;
  • Повышение износа покрышки.

Все перечисленные недостатки предопределенны конструктивными особенностями, и без фундаментальных изменений устранить их невозможно.

Второй вид, популярность которого неизменно растет — так называемая, динамо втулка.

В данном случае, динамомашина для велосипеда конструктивно выполнена как колесная втулка. Выходное напряжение таких генераторов составляет порядка шести вольт при мощности до двух, а иногда, трех ватт.

Все преимущества такой динамо-машины для велосипеда, определяются ее конструктивной особенностью. К числу «плюсов» необходимо отнести:

  • Абсолютная бесшумность. Это достигается за счет конструктивного выполнения в виде втулки для колеса;
  • Динамо работает без использования эффекта трения, а потому не влияет на износ покрышки и иных деталей;
  • Полностью сбалансированная конструкция исключает дисбаланс на вилке;
  • Высокая эффективность. Поскольку нет трущихся поверхностей, проскальзывания не будет при любых погодных условиях;
  • Полная изоляция от стальной конструкции велосипеда электрической цепи проводки.

При всем том, динамо втулка не может быть отключена, при движении она работает постоянно. Некоторые специалисты считают этот момент недостатком, однако объективно, при отключенной нагрузке, динамо не будет влиять на свободу вращения колеса, а потому считать невозможность отключения за недостаток будет в корне неверно. Еще один момент – высокая масса, хотя при идеальной балансировке, это не влияет на ходовые качества велосипеда в той степени, в какой станет ощутимо на практике. Единственный серьезный недостаток – цена и сложность конструкции, а также то, что для установки такого генератора необходимо перебирать все колесо, а это, несомненно, требует определенных умений и подготовки.

Итак, выбирая, динамо для своего двухколесного друга, помните о безопасности, надежности и ориентируйтесь на ваши финансовые возможности. Какая будет динамка для велосипеда, решать, безусловно, вам и никому другому.

Поскольку этот тип генератора набирает популярность, остановимся на некоторых его особенностях, которые необходимо знать и понимать.

Прежде всего, если бутылочный генератор вырабатывает постоянный электрический ток, то динамо втулка для велосипеда генерирует переменное напряжение. В чем разница? Попробуем разобраться, не углубляясь излишне в электродинамику.

Постоянный ток имеет полюса: «плюс» и «минус». Такой ток всегда течет в одном направлении от плюса к минусу. Переменное напряжение не имеет полярности. Для того, чтобы горела обычная лампа накаливания, не имеет значения то, какой будет ток, постоянный или переменный. Но для светодиодной фары все обстоит иначе: светодиоды будут работать только при постоянном токе и правильном подключении. Если устанавливается динамо втулка на велосипед, то подключать светодиодную фару необходимо через специальный выпрямительный мост. Это будет актуально для любых потребителей энергии, рассчитанных на питание от источника постоянного тока.

Установка динамо втулки

При установке бутылочного генератора трудностей не возникает, а вот втулка генератор для велосипеда, заставит вас поработать.

Прежде всего, поскольку сама конструкция такого генератора предусматривает установку в качестве несущей втулки, колесо придется снять и полностью разобрать. Предварительно позаботьтесь о комплекте укороченных спиц. После полной разборки, укрепите короткими спицами обод на втулке. Старайтесь ровно и равномерно установить, постепенно натягивая спицы, а после, подтягивая, укрепить обод окончательно. Затем необходимо сделать балансировку и проверить на биение и дисбаланс.

Внимание! В генераторе бутылочного типа, на корпусе идет минус питания. Динамо втулка не имеет электрического контакта с корпусом, а потому вы можете сделать электропроводку полностью изолированную или использовать в качестве одного из проводников металлическую раму. Если устанавливается выпрямительный мост, то раму нужно присоединять после него.