Эл сх энергосберегающей переделка в зл трансформатор. Как сделать импульсный блок питания из сгоревшей лампочки

Энергосберегающие лампочки нашли широкое применение, как в бытовых, так и в производственных целях. Со временем любая лампа приходит в неисправное состояние. Однако при желании светильник можно реанимировать, если собрать блок питания из энергосберегающей лампы. При этом в качестве составляющих блока используется начинка вышедшей из строя лампочки.

Импульсный блок и его назначение

На обоих концах трубки люминесцентной лампы имеются электроды, анод и катод. В результате подачи электропитания компоненты лампы разогреваются. После нагрева происходит выделение электронов, которые сталкиваются со ртутными молекулами. Следствием происходящего становится ультрафиолетовое излучение.

За счет наличия в трубке люминофора осуществляется конвертация люминофора в видимое свечение лампочки. Свет появляется не сразу, а спустя определенный промежуток времени после подключения к электросети. Чем более выработан светильник, тем длительнее интервал.

Работа импульсного блока питания основывается на следующих принципах:

  1. Преобразование переменного тока из электросети в постоянный. При этом напряжение не меняется (то есть остается 220 В).
  2. Трансформация постоянного напряжения в прямоугольные импульсы за счет работы широтного импульсного преобразователя. Частота импульсов составляет от 20 до 40 кГц.
  3. Подача напряжения на светильник посредством дросселя.

Источник бесперебойного питания (ИБП) состоит из целого ряда компонентов, каждый из которых в схеме имеет свою маркировку:

  1. R0 - выполняет ограничивающую и предохраняющую роль в блоке питания. Устройство предотвращает и стабилизирует чрезмерный ток, идущий по диодам в момент подключения.
  2. VD1, VD2, VD3, VD4 - выступают в качестве мостов-выпрямителей.
  3. L0, C0 - являются фильтрами передачи электрического тока и защищают от перепадов напряжения.
  4. R1, C1, VD8 и VD2 - представляют собой цепь преобразователей, использующихся при запуске. В качестве зарядки конденсатора C1 используется первый резистор (R1). Как только конденсатор пробивает динистор (VD2), он и транзистор раскрываются, в результате чего начинается автоколебание в схеме. Далее прямоугольный импульс посылается на диодный катод (VD8). Возникает минусовой показатель, перекрывающий второй динистор.
  5. R2, C11, C8 - облегчают начало работы преобразователей.
  6. R7, R8 - оптимизируют закрытие транзисторов.
  7. R6, R5 - образуют границы для электротока на транзисторах.
  8. R4, R3 - используются в качестве предохранителей при скачках напряжения в транзисторах.
  9. VD7 VD6 - защищают транзисторы БП от возвратного тока.
  10. TV1 - является обратным коммуникативным трансформатором.
  11. L5 - балластный дроссель.
  12. C4, C6 - выступают как разделительные конденсаторы. Делят все напряжение на две части.
  13. TV2 - трансформатор импульсного типа.
  14. VD14, VD15 - импульсные диоды.
  15. C9, C10 - фильтры-конденсаторы.

Обратите внимание! На схеме ниже красным цветом отмечены компоненты, которые нужно удалить при переделывании блока. Точки А-А объединяют перемычкой.

Только продуманный подбор отдельных элементов и правильная их установка позволит создать эффективно и надежно работающий блок питания.

Отличия лампы от импульсного блока

Схема лампы-экономки во многом напоминает строение импульсного блока питания. Именно поэтому изготовить импульсный БП несложно. Чтобы переделать устройство, понадобятся перемычка и дополнительный трансформатор, который станет выдавать импульсы. Трансформатор должен иметь выпрямитель.

Чтобы сделать БП более легким, удаляется стеклянная люминесцентная лампочка. Параметр мощности ограничивается наибольшей пропускной способностью транзисторов и размерами охлаждающих элементов. Для повышения мощности необходимо намотать дополнительную обмотку на дроссель.

Переделка блока

Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.

Определение мощности

Вычисление мощности осуществляется согласно формуле:

В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

  • напряжение - 12 В;
  • сила тока - 2 А.

Вычисляем мощность:

P = 2 × 12 = 24 Вт.

Конечный параметр мощности будет больше - примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

Новые компоненты

В число новых электронных компонентов входят:

  • диодный мост VD14-VD17;
  • 2 конденсатора C9 и C10;
  • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

Дополнительная обмотка выполняет еще одну важную функцию - является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

  1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
  2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
  3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
  4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
  5. Выясняем нужное количество витков для постоянной обмотки.

Более подробно порядок расчета показан ниже.

Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.

Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.

Самостоятельное изготовление блока питания

ИБП можно изготовить своими руками. Для этого понадобятся небольшие изменения в перемычке электронного дросселя. Далее выполняется подключение к импульсному трансформатору и выпрямителю. Отдельные элементы схемы удаляются ввиду их ненужности.

Если блок питания не слишком высокомощный (до 20 Вт), трансформатор устанавливать необязательно. Хватит нескольких витков проводника, намотанных на магнитопровод, расположенный на балласте лампочки. Однако осуществить эту операцию можно только при наличии достаточного места под обмотку. Для нее подходит, к примеру, проводник типа МГТФ с фторопластовым изоляционным слоем.

Провода обычно нужно не так много, поскольку практически весь просвет магнитопровода отдается изоляции. Именно этот фактор ограничивает мощность таких блоков. Для увеличения мощности потребуется трансформатор импульсного типа.

Отличительной характеристикой такой разновидности ИИП (импульсного источника питания) считается возможность его подстраивания под характеристики трансформатора. Кроме того, в системе нет цепи обратной связи. Схема подключения такова, что в особенно точных подсчетах параметров трансформатора нет необходимости. Даже если будет допущена грубая ошибка при расчетах, источник бесперебойного питания скорее всего будет функционировать.

Импульсный трансформатор создается на основе дросселя, на который накладывается вторичная обмотка. В качестве таковой используется лакированный медный провод.

Межобмоточный изоляционный слой чаще всего выполнен из бумаги. В некоторых случаях на обмотку нанесена синтетическая пленка. Однако даже в этом случае следует дополнительно обезопаситься и намотать 3-4 слоя специального электрозащитного картона. В крайнем случае используется бумага толщиной от 0,1 миллиметра. Медный провод накладывается только после того, как предусмотрена данная мера безопасности.

Что касается диаметра проводника, он должен быть максимально возможным. Количество витков во вторичной обмотке невелико, поэтому подходящий диаметр обычно выбирают методом проб и ошибок.

Выпрямитель

Чтобы не допустить насыщения магнитопровода в источнике бесперебойного питания, используют исключительно двухполупериодные выходные выпрямители. Для импульсного трансформатора, работающего на уменьшение напряжения, оптимальной считается схема с нулевой отметкой. Однако для нее нужно изготовить две абсолютно симметричные вторичные обмотки.

Для импульсного источника бесперебойного питания не подойдет обычный выпрямитель, функционирующий согласно схеме диодного моста (на кремниевых диодах). Дело в том, что на каждые 100 Вт транспортируемой мощности потери составят не менее 32 Вт. Если же изготавливать выпрямитель из мощных импульсных диодов, затраты будут велики.

Наладка источника бесперебойного питания

Когда собран блок питания, остается присоединить его к наибольшей нагрузке, чтобы проверить - не перегреваются ли транзисторы и трансформатор. Температурный максимум для трансформатора - 65 градусов, а для транзисторов - 40 градусов. Если трансформатор чересчур нагревается, нужно взять проводник с большим сечением или же увеличить габаритную мощность магнитопровода.

Перечисленные действия можно выполнить одновременно. Для трансформаторов из дроссельных балансов нарастить сечение проводника вероятнее всего не удастся. В этом случае единственный вариант - сокращение нагрузки.

ИБП высокой мощности

В некоторых случаях стандартной мощности балласта не хватает. В качестве примера приведем такую ситуацию: есть лампа мощностью 24 Вт и необходим ИБП для зарядки с характеристиками 12 B/8 A.

Для реализации схемы понадобится неиспользуемый компьютерный БП. Из блока достаем силовой трансформатор вместе с цепью R4C8. Данная цепочка защищает силовые транзисторы от чрезмерного напряжения. Силовой трансформатор соединяем с электронным балластом. В этой ситуации трансформатор заменяет дроссель. Ниже изображена схема сборки источника бесперебойного питания, основанная на лампочке-экономке.

Из практики известно, что данная разновидность блоков дает возможность получать до 45 Вт мощности. Нагревание транзисторов находится в рамках нормы, не превышая 50 градусов. Чтобы полностью исключить перегревание, рекомендуется вмонтировать в транзисторные базы трансформатор с большим сечением сердечника. Транзисторы ставят непосредственно на радиатор.

Потенциальные ошибки

Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.

Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.

Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.

Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

Выход из строя батареи аккумуляторного шуруповерта или другого электроинструмента – событие не самое приятное, особенно если учесть, что стоимость замены этого элемента соизмерима с ценой нового прибора. Но быть может, незапланированных расходов удастся избежать? Это вполне возможно, если заменить аккумулятор простеньким самодельным энергосберегающим блоком питания импульсного типа, с помощью которого инструмент можно будет заряжать от сети. А комплектующие для него можно найти в доступном и повсеместно распространенном изделии – это .

Источник балласта энергосберегающей лампочки

ИБП из люминесцентной лампы своими руками

В большинстве случаев для сборки ИБП электронный дроссель эпра следует лишь немного изменить (при двухтранзисторной схеме) за счет перемычки, а затем подключить к импульсному трансформатору и выпрямителю. Некоторые компоненты просто удаляются за ненадобностью.

Блок питания самодельный

Для слабых блоков питания (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Достаточно будет добавить несколько витков провода на магнитопровод имеющегося в балласте лампы дросселя, если, конечно, там есть для этого место. Новую намотку можно сделать прямо поверх существующей.

Для этого отлично подойдет провод марки МГТФ с изоляцией из фторопласта. Обычно провода требуется мало, при этом почти весь просвет магнитопровода занимает изоляция, что и обуславливает малую мощность таких устройств. Чтобы увеличить ее, понадобится импульсный трансформатор.

Импульсный трансформатор

Особенностью описываемого варианта ИБП является способность до некоторой степени подстраиваться под параметры трансформатора, а также отсутствие цепи обратной связи, проходящей через этот элемент. Такая схема подключения позволяет обойтись без особо точного расчета трансформатора.

Как показала практика, даже при грубых ошибках (допускались отклонения свыше 140%) ИБП можно дать вторую жизнь и он получался работоспособным.

Трансформатор изготавливается на базе все того же дросселя, на котором наматывается вторичная обмотка из лакированного обмоточного медного провода. При этом важно уделить особенное внимание межобмоточной изоляции из бумажной прокладки, ведь «родная» обмотка дросселя будет работать под сетевым напряжением.

Даже если она покрыта синтетической защитной пленкой, поверх нее все-равно необходимо намотать несколько слоев электрокартона или хотя бы обычной бумаги общей толщиной 100 мкм (0,1 мм), а уже поверх бумаги можно укладывать лакированный провод новой обмотки.

Диаметр провода должен быть наибольшим из возможных. Витков во вторичной обмотке будет не много, поэтому их оптимальное количество можно будет подобрать опытным путем.

Используя указанные материалы и технологию можно получить блок питания мощность 20 или чуть более ватт. В данном случае ее значение ограничивается площадью окна магнитопровода и, соответственно, максимальным диаметром провода, который удается там разместить.

Выпрямитель

Во избежание насыщения магнитопровода в ИБП применяют только двухполупериодные выходные выпрямители. В том случае, если импульсный трансформатор работает на понижение напряжения, наиболее экономичной является схема с нулевой точкой, но для ее реализации понадобится сделать две полностью симметричные вторичные обмотки. При ручной намотке можно выполнить обмотку в два провода.

Стандартный выпрямитель, собранный по схеме «диодный мост» из обычных кремниевых диодов, для импульсного ИБП не подходит, поскольку из 100 Вт передаваемой мощности (при напряжении 5 В) на нем будет теряться около 32 Вт или более. Собирать же выпрямитель на мощных импульсных диодах будет слишком дорого.

Наладка ИБП

После сборки ИБП его необходимо подключить к максимальной нагрузке и проверить, насколько сильно греются транзисторы и трансформатор. Предел для трансформатора – 60 – 65 градусов, для транзисторов – 40 градусов. При перегреве трансформатора увеличивают сечение провода или габаритную мощность магнитопровода, либо выполняют оба действия совместно. Если трансформатор сделан из дросселя балласта лампы, увеличить сечение провода, скорее всего, уже не получится и придется ограничивать подключаемую нагрузку.

Как сделать светодиодный БП с повышенной мощностью

Иногда стандартной мощности электронного балласта лампы бывает недостаточно. Представим себе ситуацию: имеется 23 Вт, а необходимо получить источник питания для зарядного устройства с параметрами 12В/8А.

Для того чтобы осуществить задуманное, придется раздобыть компьютерный блок питания, оказавшийся по каким-либо причинам невостребованным. Из этого блока следует изъять силовой трансформатор вместе с цепочкой R4C8 , которая выполняет функцию защиты силовых транзисторов от перенапряжения. Силовой трансформатор следует присоединить к электронному балласту вместо дросселя.

Опытным путем было установлено, что данный тип ИБП позволяет снимать мощность до 45 Вт при незначительном перегреве транзисторов (до 50 градусов).

Чтобы избежать перегрева, в базах транзисторов необходимо установить трансформатор с увеличенным сечением сердечника, а сами транзисторы установить на радиатор.

Возможные ошибки

Как уже говорилось, включение в схему в качестве выходного выпрямителя обычного низкочастотного диодного моста нецелесообразно, а при повышенной мощности ИБП делать этого тем более не стоит.

Также бессмысленно пытаться ради упрощения схемы наматывать базовые обмотки непосредственно на силовом трансформаторе. В отсутствие нагрузки будут иметь место значительные потери из-за того, что в базы транзисторов будет поступать ток максимальной величины.

Применяемый трансформатор с увеличением тока нагрузки увеличивает и ток в базах транзисторов. Практика показывает, что при достижении мощностью нагрузки значений в 75 Вт в магнитопроводе трансформатора имеет место насыщение. Это приводит к ухудшению характеристик транзисторов и их перегреву.

Во избежание этого можно самому намотать трансформатор тока, в два раза увеличив сечение сердечника или сложив вместе два кольца. Также можно в два раза увеличить диаметр провода.

Существует способ избавиться от базового трансформатора, выполняющего промежуточную функцию. Для этого токовый трансформатор через мощный резистор подключают к отдельной обмотке силового обогревателя, реализуя схему обратной связи по напряжению. Недостатком данного варианта является то, что токовый трансформатор при этом постоянно работает в режиме насыщения.

Нельзя подключать трансформатор параллельно с имеющимся в балластном преобразователе дросселем. Вследствие уменьшения суммарной индуктивности будет увеличена частота блока питания. Такое явление приведет к увеличению потерь в трансформаторе и перегреву транзисторов выходного выпрямителя.

Следует учитывать повышенную чувствительность диодов Шоттки к превышению значения обратных напряжения и тока. Попытка установить, скажем, 5-вольтовый диод в 12-вольтовую схему, скорее всего, приведет к выходу элемента из строя.

Не пытайтесь заменить транзисторы и диоды отечественными, например, КТ812А и КД213. Это однозначно приводит к ухудшению рабочих характеристик устройства.

Как подключать ИБП к шуруповерту

Электроинструмент необходимо разобрать, отвинтив все шурупы. Обычно корпус шуруповерта состоит из двух половинок. Далее следует найти провода, которыми двигатель подключается к батарее. Соединить эти провода с выходом ИБП можно с помощью пайки или термоусадочной трубки, вариант со скрутками нежелателен.

Для ввода провода от блока питания в корпусе инструмента необходимо выполнить отверстие. Важно предусмотреть меры, предотвращающие вырывание провода в случае неосторожных движений или случайных рывков. Самый простой вариант – обжать провод внутри корпуса у самого отверстия клипсой из сложенного пополам коротенького отрезка мягкой проволоки (подойдет алюминий). Имея превосходящие диаметр отверстия размеры, клипса не даст проводу оторваться и выпасть из корпуса в случае рывка.

Техническая информация : → Из сгоревшей энергосберегающей лампы изготовить блок питания

В этой публикации размещен материал для ремонта или изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить за короткое. На изготовление 100-ваттного блока питания может понадобится до нескольких часов.

Построить блок питания будет несложно, умеющим паять. И несомненно, это сделать несложно, чем найти низкочастотный подходящий для изготовления трансформатор нужной мощности и перемотать его вторичные обмотки под нужное напряжение.

В последнее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку приходится выбрасывать.


Однако электронный балласт такой лампочки, это практически готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.


В последнее же время, радиолюбители порой испытывают трудности при поиске силовых трансформаторов для питания своих самодельных конструкций. Если даже трансформатор найден, то его перемотка требует использования необходимый по диаметру медные провода, да и массо - габаритные параметры изделий, собранных на основе силовых трансформаторов не особо радует. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит определенную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.


Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания необходимо установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно будет удалить.


А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.



Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, при его использовании.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя из состава блока лампы.


В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.
Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.
Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.


Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!


На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.
Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.


Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.


Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.
Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.
100 / 5 * 0,4 = 8 (Ватт)
Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.
100 / 5 * 0,8 * 2 = 32 (Ватт).
Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.


В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.


Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.
При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.


А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.


Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.


Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.
Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.
Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.
Если сильно греются транзисторы, то нужно установить их на радиаторы.
Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.
Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.
VD1… VD4 – мостовой выпрямитель.
L0, C0 – фильтр питания.
R1, C1, VD2, VD8 – цепь запуска преобразователя.
Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.
R2, C11, C8 – облегчают запуск преобразователя.
R7, R8 – улучшают запирание транзисторов.
R5, R6 – ограничивают ток баз транзисторов.
R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.
VD7, VD6 – защищают транзисторы от обратного напряжения.
TV1 – трансформатор обратной связи.
L5 – балластный дроссель.
C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.
TV2 – импульсный трансформатор.
VD14, VD15 – импульсные диоды.
C9, C10 – конденсаторы фильтра.

Современные люминесцентные лампочки – настоящая находка для экономных потребителей. Они светят ярко, работают дольше лампочек накаливания и потребляют гораздо меньше энергии. На первый взгляд – одни плюсы. Однако из-за несовершенства отечественных электросетей они исчерпывают свой ресурс гораздо раньше сроков, заявленных производителями. И часто они даже не успевают «покрыть» затраты на их приобретение.
Но не торопитесь выбрасывать вышедшую из строя «экономку». Учитывая немалую начальную стоимость люминесцентных лампочек целесообразно «выжать» из них максимум, используя до последнего все возможные их ресурсы. Ведь прямо под спиралью в ней установлена схема компактного высокочастотного преобразователя. Для человека знающего — это целый «Клондайк» всевозможных запчастей.

Разобранная лампа

Общие сведения

Элемент питания

По сути, такая схема является практически готовым импульсным блоком питания. Не хватает в нём только разделительного трансформатора с выпрямителем. Поэтому, если колба цела, можно не боясь ртутных испарений, попытаться разобрать корпус.
Кстати именно осветительные элементы лампочек чаще всего выходят из строя: из-за выгорания ресурса, нещадной эксплуатации, слишком низких (или высоких) температур и т.д. Внутренние платы более-менее защищены герметичным корпусом и деталями с запасом прочности.
Советуем перед началом ремонтно-восстановительных работ поднакопить некоторое количество ламп (можете поспрашивать на работе или у знакомых – обычно такого добра везде хватает). Ведь не факт что все они будут ремонтопригодны. В данном случае нам важна именно работоспособность балласта (т.е. платы, встроенной внутри лампочки).

Возможно, в первый раз и придётся немного покопаться, но зато потом вы за час сможете собрать примитивный блок питания для устройств, подходящих по мощностям.
Если Вы планируете создавать блок питания, выбирайте модели люминесцентных ламп помощнее, начиная от 20 Вт. Впрочем, менее яркие лампочки тоже пойдут в ход — они могут использоваться как доноры нужных деталей.
И в результате из пары-тройки сгоревших экономок вполне можно создать одну вполне дееспособную модель, будь то рабочая лампочка, блок питания или зарядное устройство для аккумуляторов.
Чаще всего мастера-самоучки используют балласт экономок для создания 12-ваттных блоков питания. Они могут подключаться к современным светодиодным системам, ведь 12 V – это рабочее напряжение большинства самых распространённых в быту приборов, в том числе и осветительных.
Такие блоки обычно прячутся в мебели, поэтому внешний вид узла особого значения не имеет. И даже если внешне поделка получится неаккуратной – ничего страшного, главное позаботиться о максимальной электробезопасности. Для этого тщательно проверяйте созданную систему на работоспособность, оставляя поработать её в тестовом режиме на продолжительное время. Если скачков напряжения и перегрева не наблюдается – значит, Вы всё сделали правильно.
Понятно, что намного жизнь обновлённой лампочке вы не продлите — всё равно рано или поздно ресурс исчерпывается (выгорает люминофор и нить накала). Но согласитесь, почему бы не попытаться восстановить вышедшую из строя лампу в течение полугода-года после покупки.

Разбираем лампу

Итак, берём нерабочую лампочку, находим место стыка стеклянной колбы с пластиковым корпусом. Аккуратно поддеваем половинки отвёрткой, постепенно продвигаясь по «пояску». Обычно эти два элемента соединены пластиковыми защёлками, и если вы собираетесь ещё как-нибудь использовать обе составляющие, не прикладывайте больших усилий — кусок пластика может легко отколоться, и герметичность корпуса лампочки будет нарушена.

Вскрыв корпус, осторожно рассоедините контакты, идущие от балласта к нитям накала в колбе, т.к. они блокируют полноценный доступ к плате. Часто они просто примотаны к штырькам, и если Вы не планируете больше использовать вышедшую из строя колбу, можете смело отрезать соединительные проводки. В результате перед вами должна предстать примерно такая схема.

Разборка лампы

Понятно, что конструкции ламп от разных производителей могут отличаться «начинкой». Но общая схема и базовые составляющие элементы имеют много общего.
Затем нужно скрупулёзно осмотреть каждую деталь на предмет вздутий, пробоев, убедитесь в надёжности пайки все элементов. Если какая-то из деталей перегорела, это будет сразу видно по характерной копоти на плате. В случаях, когда видимых дефектов не обнаружено, но при этом лампа является нерабочей, воспользуйтесь тестером и «прозвоните» все элементы цепи.
Как показывает практика, чаще всего страдают резисторы, конденсаторы, динисторы из-за больших перепадов напряжения, которые с незавидной регулярностью возникают в отечественных сетях. Кроме того частые щёлканья выключателем крайне негативно сказываются на продолжительности работы люминесцентных лампочек.
Поэтому чтобы максимально надолго продлить им время эксплуатации, старайтесь как можно реже включать их и выключать. Сэкономленные на электроэнергии копейки в итоге выльются в сотни рублей на замену раньше времени выгоревшей лампочки .

Разобранные лампы

Если в результате первичного осмотра вы выявили подпалины на плате, вздутие деталей, попробуйте заменить вышедшие из строя блоки, взяв их у других нерабочих лампочек-доноров. После установки деталей ещё раз «прозвоните» тестером все составляющие платы.
По большому счёту из балласта нерабочей люминесцентной лампочки можно изготовить импульсный блок питания мощностью, соответствующей исходной мощности лампы. Как правило, маломощные блоки питания, не требуют существенных доработок. А вот над блоками большей мощности, конечно, придётся попотеть.
Для этого нужно будет немного расширить возможности родного дросселя, снабдив его дополнительной обмоткой. Вы можете регулировать мощность создаваемого блока питания, увеличивая число вторичных витков на дросселе. Хотите узнать, как это следует делать?

Подготовительные работы

В качестве примера — ниже приведена схема люминесцентной лампочки Vitoone, но принципиально состав плат от разных производителей отличается не сильно. В данном случае представлена лампочка достаточной мощности – 25 ватт, из неё может получиться отличный зарядный блок на 12 В.

Схема лампы Vitoone 25W

Сборка блока питания

Красным цветом на схеме обозначен осветительный узел (т.е. колба с нитями накала). Если нити в нём перегорели, тогда эта часть лампочки нам больше не понадобится, и можно смело откусить контакты от платы. Если лампочка всё же горела перед поломкой, хоть и тускло, можно потом попытаться реанимировать её на какое-то время, подсоединив к рабочей схеме с другого изделия.
Но речь сейчас не об этом. Наша цель — создать блок питания с балласта, добытого из лампочки. Итак, удаляем все что находится между точками А и А´ на приведённой выше схеме.
Для блока питания небольшой мощности (приблизительно равной исходной у лампочки-донора) достаточно лишь небольшой переделки. На месте удалённого лампочного узла нужно установить перемычку. Для этого просто примотайте новый отрезок провода к освободившимся штырькам — на месте крепления бывших нитей накала энергосберегающей лампочки (или к отверстиям под них).

В принципе Вы можете попытаться немного повысить генерируемую мощность, снабдив дополнительной (вторичной) навивкой уже имеющийся на плате дроссель (он обозначен на схеме как L5). Таким образом, его родная (заводская) навивка становится первичной, а ещё один слой вторичной — обеспечивает тот самый резерв мощности. И опять же, его можно регулировать количеством витков или толщиной навиваемого провода.

Подключение блока питания

Но, понятно, намного нарастить исходные мощности не удастся. Всё упирается в размеры «рамки» вокруг ферритов – они весьма ограничены, т.к. изначально предполагались для использования в компактных лампах. Зачастую удаётся нанести витки только в один слой, восьми – десяти для начала будет достаточно.
Старайтесь накладывать их равномерно по всей площади феррита, чтобы получить максимальную производительность. Такие системы очень чувствительны к качеству навивки и будут неравномерно нагреваться, и в конце-концов придут в негодность.
Рекомендуем на время проведения работ выпаять со схемы дроссель, так как иначе выполнить намотку будет нелегко. Очистите его от заводского клея (смол, плёнок и т.д.). Визуально оцените состояние провода первичной намотки, проверьте целостность феррита. Так как если они повреждены, нет смысла в дальнейшем продолжать с ним работать.
Перед началом вторичной намотки проложите по верху первичной обмотки полоску бумаги или электрокартона, чтобы исключить вероятность пробоя. Липкая лента в данном случае не самый лучший вариант, так как со временем клеевой состав оказывается на проводах и ведёт к коррозии.
Схема доработанной платы из лампочки будет выглядеть так

Схема доработаной платы из лампочки

Многие не понаслышке знают, что делать обмотку трансформатора своими руками то ещё удовольствие. Это скорее занятие для усидчивых. В зависимости от количества слоёв на это можно потратить от пары часов, до целого вечера.
Ввиду ограниченности пространства дроссельного окна для создания вторичной обмотки рекомендуем использовать лакированный медный кабель, сечением 0,5 мм. Потому что проводам в изоляции там просто не хватит места для навивки сколько-нибудь значимого количества витков.
Если надумаете снять изоляцию с имеющегося у вас провода, не пользуйтесь острым ножом, т.к. после нарушения целостности внешнего слоя обмотки на надёжность такой системы придётся только надеяться.

Кардинальные преобразования

В идеале для вторичной обмотки нужно брать такой же тип провода, как и в исходном заводском варианте. Но часто «окно» магнитоприёмника дросселя настолько узкое, что не получается даже намотать один полноценный слой. А ещё ведь обязательно нужно учитывать толщину прокладки между первичной и вторичной обмоткой.
В результате кардинально изменить мощности, выдаваемые схемой лампы, без внесения изменений в состав компонентов платы не получится. Кроме того, насколько бы аккуратно вы не выполняли намотку, сделать её так качественно, как в моделях, произведённых заводским способом, вам всё равно не удастся. И в данном случае проще тогда собрать импульсный блок с нуля, чем переделывать «добро», добытое бесплатно из лампочки.
Поэтому рациональнее поискать на разборках старой компьютерной или телерадиотехники готовый трансформатор с искомыми параметрами. Он выглядит намного компактнее, чем «самоделка». Да и запас прочности его не идёт ни в какое сравнение.

Трансформатор

И Вам не придётся ломать голову над расчётами количества витков для получения желаемой мощности. Припаял к схеме – и готово!
Поэтому если мощность блока питания нужна бóльшая, скажем порядка 100 Вт, тогда придётся действовать радикально. И только имеющимися в лампах запчастями тут не обойтись. Так если Вы хотите ещё больше повысить мощность блока питания, необходимо выпаять и удалить с платы лампочки родной дроссель (обозначен на схеме ниже как L5).

Подробная схема ИБП

Подключенный трансформатор

Затем на участке между прежним местом дросселя и реактивной средней точкой (на схеме этот отрезок находится между разделительными конденсаторами С4 и С6) подсоединяется новый мощный трансформатор (обозначен как TV2). К нему, при необходимости, подсоединяется выходной выпрямитель, состоящих из пары соединительных диодов (они обозначены на схеме как VD14 и VD15). Не помешает попутно заменить на более мощные и диоды на входном выпрямителе (на схеме это VD1-VD4).
Не забудьте также установить более ёмкий конденсатор (показан на схеме как С0). Подбирать его нужно из расчёта1 микрофарад на 1 Вт выходной мощности. В нашем случае был взят конденсатор на 100 mF.
В результате мы получаем вполне дееспособный импульсный блок питания из энергосберегающей лампы. Собранная схема будет выглядеть примерно так.

Пробный пуск

Пробный пуск

Подключённая к цепи, она служит чем-то сродни предохранителя стабилизатора и оберегает блок при перепадах токов и напряжения. Если всё хорошо, лампа особо никак не влияет на работу платы (из-за низкого сопротивления).
Зато при скачках высоких токов сопротивление лампы возрастает, нивелируя негативное воздействие на электронные компоненты схемы. И даже если вдруг лампа сгорит — её будет не так жалко, как собственноручно собранный импульсный блок, над которым вы корпели несколько часов.
Самая простая схема проверочной цепи выглядит так.

Запустив систему, понаблюдайте, как меняется температура трансформатора (или обмотанного «вторичкой» дросселя). В том случае если он начинает сильно нагреваться (до 60ºС), обесточьте цепь и попробуйте заменить провода обмотки аналогом с большим сечением, или же увеличьте количество витков. То же самое касается и температуры нагрева транзисторов. При существенном её росте (до 80ºС) следует снабдить каждый из них специальным радиатором.
Вот в принципе и всё. Напоследок напоминаем Вам о соблюдении правил безопасности, так как на выходе напряжение очень высокое. Плюс ко всему компоненты платы могут сильно нагреваться, никак не меняясь при этом внешне.

Также не советуем использовать такие импульсные блоки при создании зарядных устройств для современных гаджетов с тонкой электроникой (смартфонов, электронных часов, планшетов и т.д.). Зачем так рисковать? Никто не даст гарантию что «самоделка» будет работать стабильно, и не угробит дорогостоящее устройство. Тем более что подходящего добра (имеется в виду готовых зарядок) более чем предостаточно на рынке, и стоят они совсем недорого.
Такой самодельный блок питания может безбоязненно использоваться для подключения лампочек разных видов, для запитки LED-лент, несложных электроприборов, не столь чувствительных к скачкам токов (напряжения).

Надеемся, Вы смогли осилить весь приведённый материал. Возможно, он вдохновит вас попробовать создать нечто подобное самостоятельно. Пусть даже первый блок питания, сделанный вами из платы лампочки, сначала и не будет реальной рабочей системой, зато Вы приобретёте базовые навыки. И главное – азарт и жажду творчества! А там, глядишь, и получится сделать из подручных материалов полноценный блок питания для светодиодных лент, весьма популярных сегодня. Удачи!

«Глазки ангела» для автомобиля собственноручно Как правильно изготовить самодельный светильник из веревок Устройство и регулировка диммируемых светодиодных лент

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA . Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1 ) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост , выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1 , дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии:) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1 , который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш -образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор . На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1 . Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра . Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

    С холодным запуском

    С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC - терморезистор) . На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.