Импульсный блок питания на ir2153, ir2155. Мощное зарядное устройство для любых аккумуляторов Инструкция по изготовлению импульсного ЗУ своими руками

Импульсный блок питания на IR2151-IR2153

Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.


На входе стоит PTC термистор – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.

Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа "вертикалка", но можно использовать диодную сборку типа "табуретка".

Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.

Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

Полевые транзисторы используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф .

Печатная плата

Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих "наворотов", присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных "плохому питанию" (фон и посторонние звуки).

В работе полевые транзисторы не сильно нагреваются.

Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.

Схема такого импульсного блока питания в интернете встречается довольно часто, но в некоторых из них допущены ошибки, я же в свою очередь чуть доработал схему. Задающая часть (генератор импульсов) собран на ШИМ-контроллере IR2153. Схема из себя представляет типичный полумостовой инвертор с мощностью 250 ватт.

Импульсное ЗУ для зарядки аккумуляторов схема
Мощность инвертора можно повысить до 400 ватт, если заменить электролитические конденсаторы на 470 мкФ 200 Вольт.

Силовые ключи с нагрузкой до 30 -50 ватт остаются холодными, но их нужно установить на теплоотводы, возможно будет нужда в воздушном охлаждении.

Использован готовый трансформатор от компьютерного блока питания (подойдет буквально любой). Они имеют шину 12 Вольт до 10 Ампер (зависит от мощности блока, в котором они использовались, в некоторых случаях обмотка на 20 Ампер). 10 Ампер тока вполне хватит для зарядки мощных кислотных аккумуляторов с емкостью до 200А/ч.

Диодный выпрямитель — в моем случае была использована мощная диодная сборка шоттки на 30 Ампер. Диод всего один.

ВНИМАНИЕ!
Не коротить вторичную обмотку трансформатора, это приведет к резкому повышению тока в первичной цепи, к перегреву транзисторов, в следствии чего они могут выйти из строя.

Дроссель — тоже был снят от импульсного БП, его при желании можно исключить из схемы, он тут применен в сетевом фильтре.

Предохранитель тоже не обязательно ставить. Термистор — любой (я взял от нерабочего компьютерного блока питания). Термистор сохраняет силовые транзисторы во время бросков напряжения. Половина компонентов этого блока питания можно выпаять из нерабочих компьютерных БП, в том числе и электролитические конденсаторы.

Полевые транзисторы — я ставил мощные силовые ключи серии IRF740 с напряжением 400 Вольт при токе до 10 Ампер, но можно использовать любые другие аналогичные ключи с рабочим напряжением не менее 400 Вольт с током не менее 5 Ампер.

К блоку питанию не желательно добавить дополнительные измерительные приборы, поскольку ток тут не совсем постоянный, стрелочный или электронный Вольтметр могут работать неправильно.
Готовое зарядное устройство достаточно компактное и легкое, работает полностью бесшумно и не греется при холостом ходу, обеспечивает достаточно большой выходной ток. Затраты на компоненты минимальны, но на рынке такие ЗУ стоят 50-90$.

Рассказать в:

Долго меня волновала тема того, как можно использовать блок питания от компьютера в качестве питания усилителя мощности. Но переделывать блок питания - то ещё развлечение, особенно импульсный с таким плотным монтажом. Хоть я и привычный ко всяким фейерверкам, но домашних пугать очень не хотелось, да и опасненько это и для самого.

В общем, изучение вопроса привело к довольно простому решению, не требующему никаких особенных деталей и практически никакого налаживания. Собрал-включил-работает. Да и хотелось попрактиковаться в вытравливании печатных плат с помощью фоторезиста, так как в последнее время современные лазерные принтеры стали жадными до тонера, и привычная лазеро-утюжная технология не задалась. Результатом работы с фоторезистом я остался очень доволен, - для эксперимента на плате вытравил надпись линией толщиной 0,2мм. И она прекрасно получилась! Итак, довольно прелюдий, опишу схему и процесс сборки-наладки блока питания.

Блок питания на самом деле очень прост, собран практически весь из деталей, оставшихся после разборки не самого хорошего импульсника от компьютера, - из тех, в которые «не докладывают» деталей. Одна из этих деталей - импульсный трансформатор, который можно использовать без перемотки в блоке питания на 12В, или пересчитать, что тоже очень просто, на любое напряжение, для чего я использовал программу Москатова.

Схема блока импульсного блока питания :

В качестве компонентов были использованы следующие:

драйвер ir2153 - микросхема, используется в импульсных преобразователях для питания люминесцентных ламп, её более современный аналог - ir2153D и ir2155. В случае использования ir2153D диод VD2 можно исключить, так как он уже встроен в микросхему. У всех микросхем серий 2153 в цепи питания уже стоит встроенный стабилитрон на 15,6В, поэтому не стоит сильно заморачиваться с устройством отдельного стабилизатора напряжения для питания самого драйвера;

VD1 - любой выпрямительный с обратным напряжением не ниже 400В;

VD2-VD4 - «быстродействующие», с малым временем восстановления (не больше 100нс) например - SF28; На самом деле VD3 и VD4 можно исключить, я их не ставил;

в качестве VD4, VD5 - использован сдвоенный диод от компьютерного блока питания «S16C40″ - это диод «Шоттки», можно поставить любой другой, менее мощный. Нужна эта обмотка для питания драйвера ir2153 после того, как запустится импульсный преобразователь. Можно исключить и диоды и обмотку, если не планируется снимать мощность более 150Вт;

Диоды VD7-VD10 - мощные диоды «Шоттки», на напряжение не ниже 100В и ток не меньше 10 А, например - MBR10100, или другие;

транзисторы VT1, VT2 - любые мощные полевые, от их мощности зависит выходная, но сильно тут увлекаться не стоит, как и снимать с блока более 300Вт;

L3 - намотан на ферритовом стержне и содержит 4-5 витков провода 0,7мм; Эту цепочку (L3, C15, R8) можно вообще исключить, она нужна, чтобы немного облегчить режим работы транзисторов;

Дроссель L4 намотан на кольце от старого дросселя групповой стабилизации того же блока питания от компьютера, и содержит по 20 витков, мотается сдвоенным проводом.

Конденсаторы на входе можно поставить и меньшей ёмкости, их ёмкость можно примерно подобрать исходя и снимаемой мощности блока питания, примерно как 1-2мкФ на 1 Вт мощности. Не стоит увлекаться конденсаторами и ставить на выход блока питания ёмкости больше 10000 мкФ, так как это может привести к «салюту» при включении, так как они при включении требуют значительного тока для зарядки.

Теперь пару слов о трансформаторе. Параметры импульсного трансформатора определены в программе Москатова и соответствуют Ш-образному сердечнику со следующими данными: S0 = 1,68 кв.см; Sc = 1,44 кв.см; Lср.л. = 86см; Частота преобразования - 100кГц;

Получившиеся расчётные данные:

Обмотка 1 - 27 витков 0,90мм; напряжение - 155В; Намотана в 2 слоя проводом, состоящим из 2 жил по 0,45мм; Первый слой - внутренний содержит 14 витков, второй слой - наружний содержит 13 витков;

обмотка 2 - 2 половины по 3 витка проводом 0,5мм; это - «обмотка самопитания» на напряжение около 16В, мотается проводом так, чтобы направления намотки были в разную сторону, средняя точка выводится наружу и подключается на плате;

обмотка 3 - 2 половины по 7 витков, намотана так же многожильным проводом, сначала - одна половина в одну сторону, потом через слой изоляции - вторая половина, в противоположную сторону. Концы обмоток выведены наружу в «косу» и подключаются в общую точку на плате. Обмотка рассчитана на напряжение около 40В.

Таким же образом можно рассчитать трансформатор на любое нужное напряжение. У меня собраны 2 таких блока питания, - один - для усилителя на TDA7293, второй - на 12В для питания всяческих поделок, - используется в качестве лабораторного.

Блок питания для усилителя на напряжение 2х40В:

Импульсный блок питания на 12В:

Блок питания в сборе в корпусе:

Фото испытаний импульсного блока питания, - того, что для усилителя с помощью эквивалента нагрузки из нескольких резисторов МЛТ-2 по 10Ом, включаемых в разной последовательности. Целью было получить данные о мощности, падении напряжения и разности напряжений в плечах +/- 40В. По итогам у меня получились такие параметры:

Мощность - около 200Вт (больше не стал пытаться снимать);

напряжение, в зависимости от загрузки - 37,9-40,1В во всём диапазоне от 0 до 200Вт

Температура на максимальной мощности 200Вт после тестового прогона в течение получаса:

трансформатора - около 70град.цельсия, радиатора диодов без активного обдува - около 90 град.цельсия. С активным обдувом - быстро приближается к комнатной и практически не греется. В итоге радиатор был заменён, и на следующих фото блок питания уже с другим радиатором.

При разработке блока питания были использованы материалы сайта vegalab и radiokot, на форуме «Веги» очень подробно описан этот блок питания, так же есть варианты блока с защитой от КЗ, что есть неплохо. У меня например при случайном КЗ мгновенно сгорела дорожка на плате во вторичной цепи

Внимание!

Первое включение блока питания следует производит через лампу накаливания мощностью не более 40Вт. При первом включении в сеть она должна на короткое время вспыхнуть и погаснуть. Светиться она практически не должна! При этом можно проверить выходные напряжения и попробовать несильно нагрузить блок (не больше 20Вт!). Если всё в порядке, - лампочку можно убирать и приступать к испытаниям.

ЗЫ: При сборке и наладке блока питания ни одного животного не пострадало, хотя один раз-таки был словлен «фейерверк» с искрами и спецэффектами при взрыве силовых ключей. После их замены блок заработал как ни в чём не бывало;

ЗЗЫ: Внимание! Этот блок питания имеет цепи, связанные с сетью высокого напряжения! Если вы не понимаете, что это такое и к чему может привести, - лучше отказаться от идеи собрать этот блок. Кроме того, в цепи высокого напряжения имеется действующее напряжение около 320В!

Раздел: [Схемы]
Сохрани статью в:

У каждого автолюбителя есть для АКБ 12 В. Все эти старые зарядки с различным успехом работают и выполняют свои функции, но есть у них общий недостаток - слишком большие габариты и вес. Это не удивительно, ведь один только силовой трансформатор на 200 ватт может весить до 5 кг. Поэтому и задумал собрать импульсное зарядное для автоаккумулятора. На просторах инета, точнее на форуме Kazus нашел схему этого ЗУ.

Схема принципиальная ЗУ - клик для увеличения размера

Собрал, работает прекрасно! Заряжал автомобильный аккумулятор, настроил зарядник на 14.8 в и на ток около 6 А, перезаряда или недозаряда нет, при достижении и напряжения на клемах аккумулятора 14.8 в, ток зарядки падает автоматически. Также заряжал гелиевый свинцовый аккумулятор от бесперебойника ПК - нормально. Замыканий на выходе данный зарядник не боится. А вот от переполюсации надо защиту делать, сам сделал на реле.

Печатная плата, даташиты на некоторые радиоэлементы и другие файлы смотрите на форуме.

В общем всем советую его сделать, так как у этого ЗУ много преимуществ: малые размеры, база радиоэлементов не дефицит, многое можно купить и в том числе готовый импульсный трансформатор. Сам его приобрёл в интернет магазине - прислали быстро и дёшево. Оговорюсь сразу, вместо диода Шоттки VD6 (термостабилизация), поставил просто сопротивление на 100 Ом, зарядное и с ним работает прекрасно! Схему собрал и испытал: Demo .