Подслушивающее устройство на расстоянии, отличие от жучков. Что такое наноэлектроника и как она работает Фавориты на рынке

Наноэлектроника – область электроники, связанная с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами, не превышающими 100 нм (в том числе интегральных схем), и приборов на основе таких устройств, а также с изучением физических основ функционирования таких устройств и приборов.

Уже в начале нашего века появились серьезные преграды на пути развития электроники. Прежде всего это касается роста степени интеграции и быстродействия интегральных схем (ИС). Планарная технология приближается к фундаментальным пределам, определяемым самой природой. Ведущие производители ИС уверенно осваивают технологию 90 нм. Казалось бы, “еще немного, еще чуть-чуть”, и будет технология в 50 нм, но… в силу вступают квантовые законы и эффекты. Например, пробел между проводящими дорожками шириной 50 нм будет насквозь “простреливаться” в поперечном направлении электронами за счет туннельного эффекта.

Другие проблемы – отвод тепла, выделяемого элементами ИС, сверхплотно расположенными в микрообъеме кристалла, а также уровень собственных шумов, равный полезному сигналу или превышающий его.

В связи с этим, рассматриваются различные пути преодоления трудностей, связанных с нанометровыми масштабами. Один из возможных путей дальнейшего прогресса – разработка миниатюрных интегральных устройств, в которых роль электронов частично или полностью передана фотонам. Это должно привести к созданию вычислительной техники, превосходящей по быстродействию и информационной емкости современные

электронные устройства. Для реализации приборов с квантовой связью или устройств оптической обработки информации могут быть использованы квантовые плоскости на основе множества чередующихся сверхтонких (толщиной в один атом) полупроводниковых пленок. Замена электронов на фотоны породило новое направление в электронике – нанофотонику.

Союз магнитных полупроводников с фотоникой позволит создать запоминающие устройства на ядрах атомов. А благодаря интеграции традиционных составных частей компьютера на одном магнитно-полупроводниковом оптическом чипе мы получим сверхбыстрые и сверхэффективные нанокомпьютеры и другие устройства обработки, передачи и хранения данных. Свою лепту в повышение быстродействия внесет также отказ от необходимости изменять способ представления информации в памяти, процессоре, канале передачи данных.

Использование на чипе магнитооптоэлектронных структур позволит изготавливать очень быстрые переключатели и коммутаторы сигналов, способные работать на частотах в несколько терагерц. Следует также отметить, что магнитооптические полупроводники дадут возможность осуществлять прямое преобразование квантовой информации из электронного представления в оптическое и обратно минуя процесс детектирования.

Еще одна альтернатива – углеродная наноэлектроника, где ведущая роль принадлежит уже знакомым нам углеродным нанотрубкам. Одним из уникальнейших свойств нанотрубок является возможность управления их физико-химическими свойствами посредством изменения хиральности – скрученности решетки относительно продольной оси.

Всего лишь правильно изогнув нанотрубку в нужном месте, можно с легкостью получить проволоку нанометрового диаметра, как с металлическим, так и с полупроводниковым типом проводимости. При этом соединение двух таких нанотрубок образует диод, а трубка, лежащая на поверхности окисленной кремниевой пластины, – канал нанотранзистора. В настоящее время зарубежные компании массово производят 65-нанометровые чипы. Такие наноэлектронные устройства уже созданы и доказали свою работоспособность.

Исследователям из японского Национального Института материаловедения удалось перенести старую технологию механоэлектрических выключателей на квантовый уровень. Они создали миниатюрный механический выключатель, подобный тем, которые по сей день используется во многих бытовых приборах.

Принцип работы выключателя прост – при подаче напряжения на устройство между двумя нанопроводниками возникает или распадается мостик из серебра, который выполняет роль проводника (рис. 5). Длина мостика, по которому протекает ток, – всего 1 нанометр. На отрезке длиной 1 нанометр можно расположить 10 атомов водорода. Транзистор, изготовленный на основе этого ключа, будет вдесятеро меньше транзистора, используемого в современном процессоре Pentium IV. Поэтому наноэлектроника на основе новых квантовых переключателей может вытеснить современную уже через 10 лет. В отличие от обычных механоэлектрических переключателей у нано-аналога нет движущихся механических частей. Перемычка из серебра возникает между шинами просто от подачи на них напряжения.

Мостик, состоящий из атомов серебра, формируется, когда между шинами возникает небольшая положительная разность потенциалов. А когда это напряжение меняет знак, мостик разрушается. Устройство работает при комнатной температуре. Прототип, изготовленный учеными, переключается с частотой около 1 мегагерц (или миллион раз в секунду) при разнице потенциалов между шинами 0,6 В. Частота переключений устройства связана с толщиной шин. Если их еще уменьшить, то можно достичь частоты в 1 гигагерц. Этот частотный предел использует современная электроника.

Рис 5. Матрица квантовых наноключей.

Секрет формирования серебряного мостика состоит в составе нанопроводников шин. Один проводник состоит из сульфида серебра, покрытого тонким слоем чистого серебра. Второй – из платины, тоже покрытой чистым серебром. При возникновении между шинами положительной разности потенциалов атомы серебра “собираются” в мостик длиной 1 нанометр, а при изменении знака напряжения мостик разрушается и атомы возвращаются в прежнее состояние.

Преимущество нового ключа состоит в том, что благодаря конструкции устройства емкость памяти на его основе будет больше той, которая существует сейчас. Если же использовать каждый ключ в качестве элемента памяти, то емкость одного слоя составит 2.5 гигабит на квадратный сантиметр, в то время как самые “сверхплотные” чипы памяти характеризуются емкостью в 1 гигабит на квадратный сантиметр.

То, что новое устройство работает по законам квантовой физики, позволяет создавать на его основе многобитную память. Как известно, в квантовой физике различные энергетические состояния квантуются, принимая определенные дискретные состояния. Поэтому один ключ может представлять 16 состояний, или 4 бита.

Исследователи смогли сконструировать логические ячейки И, ИЛИ и ИЛИ-НЕ на основе нового ключа. Все логические устройства показали хорошие рабочие характеристики. Теперь ученые разрабатывают методы серийного производства матрицы квантовых ключей.

Наиболее революционные достижения наноэлектроники приближаются к квантовым пределам, установленным самой природой. Основу таких устройств составляет, например, работа одного электрона, имеющего два дискретных спиновых состояния. Но этой основе можно было бы построить квантовый компьютер, ведь для оперирования в двоичной системе исчисления достаточно реализовать элементы, способные иметь два устойчивых, стабильных во времени состояния, условно соответствующих логическим “0” и “1”, и допускать достаточно быстрые переключения между ними. Такие функции может выполнять электрон в двухуровневой системе (например, в двухатомной молекуле – переход с одного атома на другой). Другая возможность – переориентировать спин электрона из одного устойчивого состояния в другое с помощью, например, воздействия на него электромагнитного поля (этими исследованиями занимается научное направление – спинтроника).

Магнитным спином обладают не только электроны, но и некоторые другие элементарные частицы, а также ядра атомов. В наше время спинтроника изучает магнитные и магнитооптические взаимодействия в полупроводниковых структурах, динамику и когерентные свойства спинов в конденсированных средах, а также квантовые магнитные явления в структурах нанометрового размера.

В обычной твердотельной микроэлектронике информация представляется с помощью электрического заряда. Состояние магнитного момента при этом не задано - собственные моменты частиц ориентированы хаотично (рис. 6, а). Спинтроника же использует дополнительную возможность представления информации с помощью магнитного момента квантовых частиц (рис. 6, б). Одно из явлений спинтроники, названное гигантским магнитным сопротивлением (GMR), в конце 1990-х было использовано в магнитных головках жестких дисков. В результате емкость дисков за пять лет выросла более чем в сто раз.

Рис. 6. Возможные направления ориентация спинов

В будущем развитие спинтроники сулит производство компьютеров с быстродействием порядка 1 ТГц (1012 операций в секунду), плотность записи информации порядка 103 Тбит/см 2 , что на много порядков выше, чем сегодня. При такой плотности записи на диске размером с наручные часы можно было бы разместить базу данных, включающую фотографии, отпечатки пальцев, медицинские карты и биографии абсолютно всех жителей Земли.

Третье перспективное направление развития нанотехники, отмеченное еще Эриком Дрекслером, – переход, как это ни кажется парадоксальным, от электронных устройств к механическим компьютерам.

Обычный механический компьютер с элементами макроскопического масштаба, разумеется, очень громоздок и работает чрезвычайно медленно. Однако с компонентами размером в несколько атомов такой механический компьютер оказался бы в миллиарды раз компактней современной микроэлектроники. И хотя механические сигналы передаются в 100 тыс. раз медленнее, им нужно было бы “преодолевать” путь в 1 млн. раз меньший, чем электронам в современных микросхемах. Поэтому простой механический нанокомпьютер был бы более быстродействующим.

Прототип такого устройства уже существует. Компанией IBM создана удивительная “многоножка”, которая стала первым квантовым коммерческим устройством хранения данных.

Устройство состоит из записывающей матрицы манипуляторов и среды хранения информации, включающей в себя 4096 “ножек” (рис. 7), выполненных как устройства чтения/записи (подобные “ножки” – кантилеверы используются сейчас в электронных и атомно-силовывх микроскопах).

Рис. 7. «Многоножка» под оптическим микроскопом.

“Многоножка” – не простой жесткий диск, где головки не прикасаются к магнитной поверхности, она представляет собой “чистую” цифровую технологию. Принцип ее работы можно сравнить с работой старых проигрывателей граммпластинок, в которых считывающая вибрирующая игла скользила по борозде, несущей информацию, только у “многоножки” есть ряд кантилеверов, которые скользят по поверхности хранения данных, на которой есть углубления, кодирующие „1” и „0” (рис. 8).

Рис. 8. “Многоножка” считывает информацию.

Таким образом, отклонения кантилеверов от равновесного положения переводятся в набор „0” и „1”.

Ведутся исследования и в области биоэлектроники. В отличие от обычных, биологические компьютеры могут выполнять одновременно не одну, а много программ. Израильские ученые создали компьютер, состоящий из одних только ДНК и энзимов, способный параллельно выполнять 1 млрд. программ без вмешательства оператора для обработки результатов. Применять такой компьютер планируют для одновременного биохимического анализа множества веществ и для шифрования больших изображений.

Тем, что информация может иметь очень высокую ценность сегодня уже никого не удивишь. Но если раньше реально опасаться утечки информации мог лишь ограниченный круг лиц, то сегодня с этим может столкнуться практически каждый. Первое, что обычно приходит на ум, это радиомикрофоны. Они широко распространены, т.к. собрать "жучок" по описанию в радиолюбительской литературе совсем несложно. Автору даже известен случай успешной сдачи экзаменов студентами при помощи радиомикрофона. Однако обнаружить такие радиомикрофоны можно без особого труда, стоит только собрать несложный детектор поля.

Вместе с тем существует иной способ снятия информации. Известно, что звуковые волны в помещении вызывают микровибрации оконных стекол. Если направить на стекло ИК-поток, то большая его часть пройдет через стекло внутрь, однако будет и отражение. При этом отраженный поток окажется промодулированным речевой информацией. Для того чтобы оценить реальные возможности похищения информации таким путем и найти эффективный способ противодействия, автором была разработана экспериментальная схема прослушивающего устройства. Оно стоит из двух относительно независимых частей: ИК-передатчика и ИК-приемника.

Принципиальная схема ИК-передатчика показана на рисунке 1. Основу передатчика составляет генератор прямоугольных импульсов на микросхеме D1. Выходной сигнал генератора с частотой 35 кГц поступает на базу транзистора VT1, который совместно с VT2 образует составной транзистор Дарлингтона. При помощи этого транзистора коммутируется ИК-светодиод VD1.


Puc.1

Отраженный сигнал поступает на вход приемника, схема которого показана на рисунке 2.


Puc.2

Налаживание правильно собранной схемы сводится к подстройке частоты передатчика резистором R1 до получения на выходе приемника максимальной амплитуды сигнала.

ОУ К1401УД4 не имеет прямой замены среди отечественных микросхем, но вместо А1.1 и А1.2 можно применить любые ОУ с полевыми транзисторами на входе и частотой единичного усиления не менее 2,5 МГц. А1.3 можно заменить на любой ОУ широкого применения. Автор проверял такой вариант: КР574УД2Б и К140УД708. Заметно повысить характеристики приемника можно если применить малошумящие ОУ TLE2074CN и TLE2144CN фирмы Texas Instruments. Цоколевка этих микросхем полностью совпадает с цоколевкой К1401УД4. Светодиод и фотодиод можно взять зарубежного производства для систем ДУ

В авторском варианте схема с К1401УД4 обеспечивала уверенный съем информации с расстояния 5-10 метров, вариант с TLE2074CN обеспечивал съем информации с расстояния до 15-20 метров, кроме того этот вариант в силу более низкого уровня шумов позволял уверенно разбирать тихие слова даже на фоне громкой музыки.

Чувствительность устройства можно повысить дополнительными ИК-светодиодами, включенными параллельно VD1 передатчика (через свои ограничительные резисторы). Можно также увеличить коэффициент усиления приемника добавив каскад, аналогичный каскаду на А1.2, для этого можно использовать свободный ОУ микросхемы А1.

Конструктивно светодиод и фотодиод расположены так, чтобы исключить прямое попадание ИК-излучения светодиода на фотодиод, но уверенно принимать отраженное излучение. Не исключено применение оптических систем, например таких как в Л.2. Питание приемника осуществляется от двух батареек типа "Крона", передатчик питается от четырех элементов типа R20 суммарным напряжением 6В (1,5В каждый).

В заключение следует напомнить, что использование этого устройства в некоторых случаях запрещено законодательством РФ и может привести к административной или уголовной ответственности.

Область электроники, занимающаяся разработкой технологических и физических основ построения интегральных электронных схем с размерами элементов менее 100 нанометров, называется наноэлектроникой. Сам термин «наноэлектроника» отражает переход от микроэлектроники современных полупроводников, где размеры элементов измеряются единицами микрометров, к более мелким элементам - с размерами в десятки нанометров.

Каждый из нас ежедневно пользуется электроникой, и наверняка многие люди уже замечают некоторые однозначные тенденции. Память в компьютерах увеличивается, процессоры становятся производительнее, размеры устройств уменьшается. С чем это связано?

В первую очередь — с изменением физических размеров элементов микросхем, из которых все электронные устройства по сути и строятся. Хоть физика процессов остается на сегодняшний день приблизительно такой же, размеры устройств становятся все меньше и меньше. Крупный полупроводниковый прибор работает медленнее и потребляет больше энергии, а нанотранзистор - и работает быстрее, и энергии потребляет меньше.

Современные нанотехнологии на видео:

Известно, что все вещественные тела состоят из атомов. И почему бы электронике не достичь атомного масштаба? Эта новая область электроники позволит решать такие задачи, которые просто принципиально невозможно решить.

Большой интерес вызывает сейчас графен и подобные ему монослойные материалы (смотрите статью - ). Такие материалы в один атом толщиной обладают замечательными свойствами, которые можно комбинировать для создания различных электронных схем.

Например технологии связанные с зондовой микроскопией позволяют строить на поверхности проводника в сверхвысоком вакууме разнообразные структуры из отдельных атомов, просто переставляя их. Чем не основа для создания одноатомных электронных устройств?

Манипуляции веществом на молекулярном уровне уже затронули многие отрасли промышленности, не обошли они и электронику. Микропроцессоры и интегральные микросхемы строятся именно так. Ведущие страны вкладываются в дальнейшее развитие данного технологического пути — чтобы переход на наноуровень происходил быстрее, шире, и совершенствовался бы далее.

Кое-какие успехи, кстати уже достигнуты. Intel в 2007 году заявила, что процессор на базе структурного элемента размером в 45 нм разработан (представили VIA Nano) и следующим шагом будет достичь 5 нм. IBM собираются добиться 9 нм благодаря графену.

Шишкин Г. Г., Агеев И. М.

Рассматриваются особенности квантовых компьютеров, электронных устройств на сверхпроводниках, а также приборов нанобиоэлектроники. Каждая глава снабжена контрольными вопросами и заданиями для самоподготовки.

Для студентов технических вузов, аспирантов, преподавателей и практических специалистов в области электроники.

Издательство: БИНОМ. Лаборатория знаний
Год издания: 2011
Формат: 60x90/16
Страниц: 408

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Раздел 1. Физические и технологические основы

наноэлектроники. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Глава 1. Теоретические основы наноэлектроники. . . . . . . . . . . . . . . . . . . . .9

Основные положения квантовой механики,

используемые в наноэлектронике. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Момент импульса и спин. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

1.3. Магнитный резонанс. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4. Туннельный переход через потенциальный барьер. . . . . . . . . . . . . . . . 21

1.5. Квантовые потенциальные ямы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6. Интерференционные эффекты в наноструктурах. . . . . . . . . . . . . . . . . .27

Элементы зонной теории и транспортные явления

в наноразмерных структурах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

1.8. Сверхрешетки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Плотность энергетических состояний

в низкоразмерных структурах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.10. Одноэлектроника. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Физические основы спинтроники. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Глава 2. Физические свойства наноструктур

и наноструктурированных материалов. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.1. Классификация низкоразмерных структур и наноматериалов. . . . . . . . . 54

2.2. Свойства двумерных структур. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3. Свойства одномерных структур и материалов. . . . . . . . . . . . . . . . . . .76

2.4. Свойства углеродных наноструктур. . . . . . . . . . . . . . . . . . . . . . . . . .80

Свойства наночастиц и материалов с наночастицами. . . . . . . . . . . . . . . . .92

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Глава 3. Технология создания наноматериалов

и наноструктур и методы их диагностики. . . . . . . . . . . . . . . . . . . . . . . . 97

3.1. Методы диагностики нанообъектов. . . . . . . . . . . . . . . . . . . . . . . . .97

Эпитаксиальные методы создания тонких пленок

и гетероструктур. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

3.3. Технология создания квантовых точек и нитей. . . . . . . . . . . . . . . . 112

Основные технологические методы создании

углеродных наноматериалов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

3.5. Методы зондового сканирования. . . . . . . . . . . . . . . . . . . . . . . . . .122

Нанолитография. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Раздел 2. Наноэлектронные приборы. . . . . . . . . . . . . . . . . . . . . . . . . . 129

Глава 4. Полупроводниковые гомо+ и гетероструктуры

и приборы на их основе. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1. Электрические гомо+ и гетеропереходы. . . . . . . . . . . . . . . . . . . . .131

4.2. Туннельные диоды. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

4.3. Биполярные транзисторы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Полевые транзисторы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . .232

Глава 5. Наноэлектронные приборы на основе

квантово+размерных структур. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.1. Резонансно+туннельные приборы. . . . . . . . . . . . . . . . . . . . . . . . . 234

5.2. Одноэлектронные приборы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.3. Спинтронные приборы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.4. Полупроводниковые фотоприборы. . . . . . . . . . . . . . . . . . . . . . . . 268

Полупроводниковые инжекционные лазеры и светодиоды. . . . . . . . . . . 290

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Глава 6. Базовые логические элементы квантовых компьютеров. . . . . . . 318

6.1. Общие сведения о квантовых компьютерах. . . . . . . . . . . . . . . . . .318

Базовые элементы полупроводникового кремниевого

квантового компьютера на основе ядерно+магнитного

резонанса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .324

Базовые элементы для квантовых компьютеров

на квантовых точках. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Логические элементы квантовых компьютеров

на сверхпроводниках. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . .341

Глава 7. Сверхпроводимость и электронные устройства

на сверхпроводниках. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.1. Основные свойства сверхпроводящего состояния. . . . . . . . . . . . . 342

7.2. Сверхпроводники 1+го и 2+го рода. . . . . . . . . . . . . . . . . . . . . . .355

Джозефсоновские переходы и их модели. . . . . . . . . . . . . . . . . . . . . .364

7.4. Аналоговые сверхпроводниковые устройства. . . . . . . . . . . . . . . . 374

Криотроны, логические элементы и элементы памяти

на джозефсоновских переходах. . . . . . . . . . . . . . . . . . . . . . . . . . . .383

Электронные устройства, использующие ВТСП. . . . . . . . . . . . . . . . . . 389

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Глава 8. Нанобиоэлектроника. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

8.1. Общие положения и термины. . . . . . . . . . . . . . . . . . . . . . . . . . 391

8.2. Электропроводные свойства ДНК. . . . . . . . . . . . . . . . . . . . . . . .394

8.3. Приборы на основе биоэлектроники. . . . . . . . . . . . . . . . . . . . . . 396

Конечный биоавтомат Шапиро. . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Контрольные вопросы и задания. . . . . . . . . . . . . . . . . . . . . . . . . . 403

Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404

Наноэлектронные приборы и устройства создаются с помощью методов нанотехнологии. Под нанотехнологией подразумевается совокупность технологий, процессов и методик, основанных на манипуляциях с отдельными атомами и молекулами с целью получения новых материалов, приборов и устройств. Нанотехнология может использоваться в электронике, материаловедении, химии, механике, биомедицине и других областях науки и техники. А атомной и квантовой физике характерной единицей длины принято считать величину 1 А или 10 -10 м., данный выбор обусловлен тем, что ангстрем соответствует диаметру самого маленького из атомов - атома водорода. Диаметры других атомов могут лишь немного превышать 2 А. Нанометр в 10 раз больше.

Область нанодиапазона от 1 нм до 100 нм. В живой природе, состоящей так же, как и неживая материя, из атомов, молекулы протеина и липидов имеют размеры до 10 нм. Масштаб рибосом и вирусов лежит в пределах 100 нм. Например, один из продуктов нанотехнологии - нанотрубки,а также элементы сверхбольших интегрированных схем тоже имеют размеры ~100нм. Именно это дает надежду на успешное совмещение технологий живых и неживых систем, создание микроминиатюрных устройств, лекарств. Следует отметить, что с возрастанием производительности микрочипов они становятся дешевле и потребляют меньше энергии по сравнению с чипами предшествующего поколения.

Рис. 5.

По мере приближения размеров твердотельных структур к нанометровой области все больше проявляются квантовые свойства электрона. В его поведении преобладающими становятся волновые закономерности, характерные для квантовых частиц. С одной стороны, это приводит к нарушению работоспособности классических транзисторов, использующих закономерности поведения электрона как классической частицы, а с другой - открывает перспективы создания новых уникальных переключающих, запоминающих и усиливающих элементов для информационных систем. Это и есть основные объекты исследований и разработок новой области электроники - наноэлектроники.

Разработанные за последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем. Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации (0 и 1) с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Ожидает практического разрешения и идея аналогичных однофотонных элементов.

Широкое применение одноэлектронных и однофотонных элементов для создания информационных систем пока сдерживается недостаточной их изученностью, а главное, отсутствием удобных для массового производства технологий, позволяющих конструировать требуемые структуры из отдельных атомов. Такие возможности существуют только в исследовательских лабораториях. Однако современные темпы развития электроники позволяют уверенно прогнозировать промышленное освоение нанотехнологии, а вместе с ней и наноэлектроники уже в начале XXI века.

В основе приборов наноэлектроники лежат волновые свойства электрона и связанные с этим другие физические явления и эффекты. Движение электрона и связанной с ним волны де Бройля в наноразмерных твердотельных структурах определяется эффектами, споряженными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры. И эти эффекты будут вносить тем больший вклад в электрические процессы в элементе, чем меньше его размер. Когда же размер элемента сравнится с длиной волны электрона, эти эффекты станут преобладающими.

На данном рисунке приведена уникальная фотография, экспериментально подтверждающая наличие дебройлевской волны. С помощью туннельного микроскопа удалось рассадить 48 атомов железа на поверхности меди. Сформирован «квантовый загон» радиусом 7,1 нм. Волны внутри загоны представляют собой стоячие волны зарядовой плотности, соответствующие решению уравнения Шредингера. Возникновение или отсутствие изображения зависит от положения вновь имплантированного атома. Если дебройлевские волны складываются в фазе в процессе конструктивной интерференции, то изображение появляется. При деструктивной интерференции оно исчезает. Эта картинка - одно из доказательств волновой природы отдельного атома или электронов и внешних его орбит.

Решение проблем перехода от микро- к наноэлектронике вовсе не отрицает дальнейшего пути развития микроэлектроники. Однако становление наноэлектроники сулит новые научные достижения и разработки в области технологии во многих отраслях науки и техники. Развитие научных исследований наноструктур и нанотехнологий позволит получить материалы и приборы с новыми уникальными свойствами и, следовательно, решить ряд актуальных задач как в области электроники, так и во всех остальных отраслях науки и промышленности. В наномире будут работать и «старые» идеи схемотехнической электроники, в основе которых лежит использование усовершенствованного транзистора. Вместе с тем, наномир способствует рождению свежих идей, связанных с волновыми свойствами электрона, с солитонами, как носителями информационного сигнала, с новыми материалами, с новой технологией. Поэтому и появляются новые приборы и устройства наноэлектроники, реализованные либо на совершенно новых принципах, либо на хорошо забытых методах обработки информации.