Принцип работы импульсного металлодетектора. Импульсный металлоискатель

Всем привет! Давно я тут не писал. Много было дел… За окном уже весна, второй день температура держится на уровне 9-10 градусов. Снег неспешно сходит. Открытие сезона уже не за горами. Так вот, одним из дел, которое помогло бы скоротать время и приблизить сезон, была сборка металлоискателя с нуля своими руками. Результат меня порадовал:)

Кому не терпится, видео с работой данного чуда:

Все началось с того, что я наконец обзавелся фольгированным текстолитом, не заплатив за это ни копейки)). Первым делом для испытания этого текстолита) была сборка металлоискателя.

Для сборки была выбрана схема импульсного металлоискателя «Пират», ибо прибор на биениях делать было не охота). Итак, схема загружена, установлена программа Sprint Layot, распечатана на фотобумаге печатная плата. Приступаю к сборке.

Плату делал методом лазерного утюга (сокращенно ЛУТ). Подробно расписывать не буду, на это дело есть гугл:). Все, вырезан текстолит, дорожки перенесены на плату.

Далее развожу раствор для травления. И тут мне снова помог электролит из аккумулятора! Раствор включил в себя поваренную соль, перекись водорода и электролит (вечером этого же дня банку с раствором опрокинул котенок).

Ну вот, плата протравлена, отверстия просверлены. Теперь ее надо залудить. Лужение производилось паяльником.

Настал самый длительный этап сборки. А именно сбор, поиск и впайка деталей. Обе микросхемы и два транзистора были найдены без затруднений. Конденсаторы и резисторы вытащены со старых плат. Но не нашлось у меня нескольких резисторов. За ними пришлось идти в телемастеркую. Там мне их дали БЕСПЛАТНО.

Плата собрана, экспериментальная катушка намотана. Настал момент включения. Первое включение производилось от двенадцативольтового блока питания. Скрутил провода, подключил катушку, перепроверил полярность, включаю…не работает…молчит(. Греется транзистор. Перепаял. Включаю снова…тишина. Последующие проверки выявили неисправность микросхемы К157УД2. На следующий день была найдена новая и пуск повторился. И тут собранная схема показала признаки жизни. Оно работает!!! Радости было море:)

На следующий день схема была налажена и получила культурный корпус. Выведены разъемы. Теперь нужна была нормальная катушка. Ее я вырезал из куска фанеры. Потом же подобрал количество витков, залил обмотку термоклеем и замотал синей изолентой.

Теперь требовался материал для штанги, чему и был посвящен следующий день. Купил 4 метра водопроводной ПВХ трубы и 0,5 метра канализационной трубы. Из них были вырезаны соответствующие детали для сбора штанги. Трубы спаивались с помощью термоклея и фена.

Штанга собрана, катушка готова, корпус прибора приобрел надлежащий вид. Осталось все совместить. Блок прикреплен к штанге с помощью фитингов. А вот для крепления катушки в магазине не нашлось пластикового болтика. Катушка пока что временно держится на стяжке.

Осталось только купить аккумулятор с ЗУ. Работает и с аккумулятором от шуруповерта:).

В условиях дома прибор начинает реагировать на пятак с 20 см, что думаю неплохо. Также скажу, что он не имеет дискриминации, поэтому нельзя отсечь столь ненавистный всем копателям металломусор.

От процесса сборки и от полученных результатов я получил полное удовлетворение и, как я думаю, немного повысил навыки радиолюбительства, применив в своей практике новые методы.

Итак, мои вложения (кроме покупки аккумулятора) ушло 230 рублей. С аккумулятором, думаю, будет около 1000 рублей. Данный прибор можно легко окупить и даже заработать, занимаясь с его помощью поиском металлолома. Поиск монет тоже возможен, но в виду отсутствия дискриминации, он будет затруднителен.

Скажу насчет фотографий. Их я делал для себя, поэтому их качество немного жидковато:)

Также советую вам подписаться на канал «Старая Вятка» , где вас ждет много видео о копе, металлоискателях, навигации, картографии и уходу за монетами:

Радиолюбители-народному хозяйству 1992 год.

Создание достаточно чувствительных металлоискателей - довольно сложная и неблагодарная задача. Радиолюбители периодически берутся за её решение, представляют на выставку экспонаты, но редкие из них отвечают требуемым параметрам. Так, долгое время металлоискатели конструировали на основе двух генераторов высокой частоты, настроенных на близкие частоты, один из которых был стабильным по частоте (обычно стабилизировался кварцевым резонатором), а другой - рабочий - был связан с приёмной рамкой и изменял свою частоту при приближении к металлам. Сигналы двух генераторов суммировались, выделялся сигнал биений низкой частоты и по нему судили о наличии металла. После появления новой элементной базы вместо генераторов опорного сигнала начали конструировать металлоискатель с преобразователем напряжение-частота, аналого-цифровые преобразователи, синтезаторы частот и другие возможные новинки.

Археологам и криминалистам можно было бы посоветовать другую схему измерения - геофизическую. На площади, где ищут металлические включения, следует разложить петлю провода диаметром 5...25 м и больше, запитать её от автономного генератора частотой 500 Гц (чем выше частота, тем меньше глубинность). Очень удобно использовать авиационные преобразователи постоянного напряжения в переменное частотой 400 Гц (умформеры). Они имеют достаточную мощность. Можно использовать и преобразователи постоянного напряжения в переменное, выполненные на мощных транзисторах. Их можно сделать на несколько частот, и тем самым проводить «частотное зондирование», т. е. определять глубину залегания предполагаемого металлического предмета. Для проведения поисков помимо генератора надо иметь приёмник, который может представлять собой избирательный усилитель, настроенный на частоту (частоты) генератора и иметь приёмную магнитную антенну на входе, также настроенную на частоту (частоты) генератора. Идея этого метода поиска заключается в том, что в области действия электромагнитного поля петли провода любые металлические тела сплошной проводимости начинают излучать своё поле, сдвинутое по фазе относительно первичного в идеальном случае на 90°. Приёмную рамку относительно первичного поля обычно ориентируют так, чтобы в отсутствие металлических включений сигнал на выходе приёмника был бы минимальным или вообще отсутствовал, а при наличии металлических включений достигал бы максимума. Проведя измерения на нескольких частотах, можно определить ориентировочно глубину залеганий, а используя по-разному ориентированные в пространстве приёмные рамки, и местонахождение предметов. Главное преимущество такого метода измерений в том, что искомый металлический предмет становится сам источником излучения.

Аппаратуру такого рода можно использовать для трассирования труб под землёй, прокладки кабеля, трассировки скрытой проводки и других целей. Для этого генератор одним концом подсоединяют к прослеживаемой металлической системе, а другой конец заземляют (если поиск ведут на улице, в поле) или подсоединяют к трубам теплосети, водопровода (если прослеживание ведут в здании).

Петлевой индукционный метод широко был представлен на ВРВ в приложении к индукционным бесконтактным методам включения бытовых электроприборов (бесконтактные наушники для прослушивания программ радио, телевидения и др., бесконтактные телефонные аппараты, не связанные проводами с телефонной сетью, которые можно свободно носить в руках, перемещаясь по комнате). Казалось бы, другая задача, а принцип решения тот же: индуктивная связь между петлёй, в которой генерируется сигнал, и приёмником, который этот сигнал улавливает.

Импульсный металлоискатель (рис. 27). Автор конструкции радиолюбитель В. С. Горчаков. На 33 ВРВ экспонат был отмечен Третьей премией выставки.

Прибор предназначен для нахождения металлических предметов в земле. Его испытания показали, что он может обнаруживать алюминиевую пластину 100 x100 x 2 мм на глубине 75 см, ту же пластину размерами 200 x 200 x 2 мм на глубине 100 см, стальную трубу большой протяжённости и диаметром 300 мм на глубине 200 см, люк канализационного колодца на глубине 200 см, стальную трубу большой протяжённости диаметром 50 мм на глубине 120 см, медную шайбу диаметром 25 мм на глубине 35 см.

Прибор (рис. 27, а) состоит из задающего генератора 1 на частоту 100 Гц, усилителя тока импульса 2, излучающей рамки 3, генератора задержки 4 на 100 мкс, генератора стробирующих импульсов 5, согласующего усилителя 6, электронного коммутатора 7, приёмной рамки 8, двустороннего ограничителя 9, усилителя сигнала 10, интегратора 11, усилителя постоянного тока 12, индикатора 13, стабилизатора напряжения 14.

Металлоискатель работает следующим образом. Задающий генератор излучает импульс длительностью Т и (рис. 27, б), спад которого запускает генератор задержки. Импульс задающего генератора усиливается по мощности усилителем тока и поступает на излучающую рамку. Генератор задержки вырабатывает импульс длительностью 100 мкс, спадом которого запускается генератор стробирующих импульсов. Этот генератор вырабатывает стробирующий импульс длительностью 30 мкс, который через согласующий усилитель управляет работой электронного коммутатора. Коммутатор открывает усилитель сигналов на время действия стробирующего импульса и пропускает сигнал с усилителя 10 на интегратор. Сигнал с выхода интегратора через усилитель постоянного тока поступает на стрелочный индикатор.

На рис. 27, б показано распределение во времени сигналов на передающей (излучающей) рамке (кривая 1), на приёмной рамке при отсутствии (кривая 2) и при наличии металла (кривая 5). В результате экспериментов было установлено, что при отсутствии металла принятый импульс за время 100 мкс довольно резко убывает по амплитуде. При наличии в зоне контроля металлических включений длительность убывания принятого импульса по амплитуде значительно затягивается в основном за счёт действия токов Фуко. Свойство деформации формы принятого сигнала из-за воздействия металлических включений положено в основу конструкции этого прибора.

Конструкция датчика прибора показана на рис. 27, в. Излучающая и приёмная рамки намотаны на каркасе из диэлектрика наружным диаметром 300 мм. Приёмная рамка намотана внутри излучающей. Её внутренний диаметр 260 мм. Передающая рамка содержит 300 витков провода ПЭВ-2 0,44, а приёмная - 60 витков провода ПЭВ-2 0,14. Крепление ручки 1 произвольное и особых пояснений не требует.

На рис. 28 изображена принципиальная схема прибора. Задающий генератор выполнен на микросхемах DD1.1 и DD1.2. Сигнал с выхода генератора через резистор R9 поступает на вход усилителя тока импульса - транзисторы VT3-VT5, нагрузкой которого является излучающая рамка L1.1. Через конденсатор С3 импульс с задающего генератора поступает на вход генератора задержки, выполненного на элементах DD1.3, DD1.4 по схеме триггера Шмидта. Спад импульса задержки запускает генератор стробирующих импульсов, выполненный на элементах DD2.1-DD2.3. Стробирующий импульс через согласующий усилитель (транзисторы VT1, VT2) поступает на электронный коммутатор DA1, который управляет работой усилителя сигналов (DA1.1 и DA1.2) и интегратором (С12, R30), пропуская сигнал постоянного тока на усилитель постоянного тока (DA2) во время действия стробирующего импульса. Нагрузкой усилителя постоянного тока служит стрелочный прибор РА1. Для повышения стабильности измерений питание усилительных каскадов дополнительно стабилизировано. Электронные стабилизаторы выполнены на транзисторах VT6, VT7.

Металлоискатель или металлодетектор предназначен для обнаружения предметов, по своим электрическим и/или магнитным свойствам отличающихся от среды, в которой они находятся. Попросту говоря, он позволяет находить металл в земле. Но не только металл, и не только в грунте. Металлодетекторами пользуются службы досмотра, криминалисты, военные, геологи, строители для поиска профилей под обшивкой, арматуры, сверки планов-схем подземных коммуникаций, и люди многих других специальностей.

Металлоискатели своими руками чаще всего делают любители: кладоискатели, краеведы, члены военно-исторических объединений. Им, начинающим, и предназначена в первую очередь данная статья; описанные в ней устройства позволяют найти монету с советский пятак на глубине до 20-30 см или железяку с канализационный люк примерно в 1-1,5 м под поверхностью. Однако этот самодельный приборчик может пригодиться и на хозяйстве при ремонте или на стройке. Наконец, обнаружив в земле центнер-другой брошенной трубы или металлоконструкций и сдав находку в металлолом, можно выручить приличную сумму. А подобных сокровищ в земле российской точно больше, чем пиратских сундуков с дублонами или боярско-разбойничьих кубышек с ефимками.

Примечание: если вы не сведущи в электротехнике с радиоэлектроникой, не пугайтесь схем, формул и специальной терминологии в тексте. Самая суть излагается попросту, и в конце будет описание прибора, который можно сделать за 5 мин на столе, не умея не то что паять, а проводки скрутить. Но он позволит «пощупать» особенности поиска металлов, а возникнет интерес – придут и знания с навыками.

Немного больше внимания по сравнению с остальными будет уделено металлоискателю «Пират», см. рис. Этот прибор достаточно прост для повторения начинающими, но по своим качественным показателям не уступает многим фирменным моделям ценой до $300-400. А главное – он показал отличную повторяемость, т.е. полную работоспособность при изготовлении по описаниям и спецификациям. Схемотехника и принцип действия «Пирата» вполне современны; по его настройке и методике использования имеется достаточно руководств.

Принцип действия

Металлоискатель действует по принципу электромагнитной индукции. В общем схема металлоискателя состоит из передатчика электромагнитных колебаний, передающей катушки, приемной катушки, приемника, схемы выделения полезного сигнала (дискриминатора) и устройства индикации. Отдельные функциональные узлы часто объединяют схемотехнически и конструктивно, напр., приемник и передатчик могут работать на одну катушку, приемная часть сразу выделяет полезный сигнал и т.п.

Катушка создает в среде электромагнитное поле (ЭМП) определенной структуры. Если в зоне его действия оказывается электропроводящий предмет, поз. А на рис., в нем наводятся вихревые токи или токи Фуко, которые создают его собственное ЭМП. В результате структура поля катушки искажается, поз. Б. Если же предмет не электропроводящий, но обладает ферромагнитными свойствами, то он искажает исходное поле за счет экранирования. В том и другом случае приемник улавливает отличие ЭМП от исходного и преобразует его в акустический и/или оптический сигнал.

Примечание: в принципе для металлоискателя не обязательно, чтобы предмет был электропроводящим, грунт – нет. Главное, чтобы их электрические и/или магнитные свойства отличались.

Детектор или сканер?

В коммерческих источниках дорогие высокочувствительные металлодетекторы, напр. Терра-Н, нередко называют геосканерами. Это неверно. Геосканеры действуют по принципу измерения электропроводности грунта по разным направлениям на разной глубине, эта процедура называется боковым каротажем. По данным каротажа компьютер строит на дисплее картинку всего, что в земле, включая различные по свойствам геологические слои.

Разновидности

Общие параметры

Принцип действия металлодетектора возможно воплотить технически разными способами соответственно назначению прибора. Металлоискатели для пляжного золотоискательства и строительно-ремонтного поиска внешне могут быть похожи, но существенно отличаться по схеме и техническим данным. Чтобы правильно сделать металлоискатель, нужно четко представлять себе, каким требованиям он должен удовлетворять для данного рода работы. Исходя из этого, можно выделить следующие параметры поисковых детекторов металла:

  1. Проницание, или проникающая способность – максимальная глубина, на которую распространяется ЭМП катушки в грунте. Глубже прибор ничего не обнаружит при любом размере и свойствах объекта.
  2. Величина и размеры зоны поиска – воображаемая область в земле, в которой объект будет обнаружен.
  3. Чувствительность – способность обнаруживать более или менее мелкие предметы.
  4. Избирательность – способность сильнее реагировать на желательные находки. Сладкая мечта пляжных старателей – детектор, который пищит только на драгоценные металлы.
  5. Помехоустойчивость – способность не реагировать на ЭМП посторонних источников: радиостанций, грозовых разрядов, ЛЭП, электротранспорта и др. источников помех.
  6. Мобильность и оперативность определяются энергопотреблением (на сколько батареек хватит), массогабаритами прибора и размерами зоны поиска (сколько можно «прощупать» за 1 проход).
  7. Дискриминация, или разрешающая способность – дает оператору или управляющему микроконтроллеру возможность по реакции прибора судить о характере найденного объекта.

Дискриминация, в свою очередь, параметр составной, т.к. на выходе металлоискателя наличествует 1, максимум 2 сигнала, а величин, определяющих свойства и расположение находки, больше. Тем не менее, с учетом изменения реакции прибора во время приближения к объекту, в нем выделяются 3 составляющих:

  • Пространственная – свидетельствует о расположении объекта в зоне поиска и глубине его залегания.
  • Геометрическая – дает возможность судить о форме и размерах объекта.
  • Качественная – позволяет строить предположения о свойствах материала объекта.

Рабочая частота

Все параметры металлоискателя связаны сложным образом и многие взаимосвязи взаимоисключающие. Так, напр., понижение частоты генератора позволяет добиться большего проницания и зоны поиска, но ценой увеличения энергопотребления, и ухудшает чувствительность и мобильность вследствие возрастания размеров катушки. В целом же каждый параметр и их комплексы так или иначе привязаны к частоте генератора. Поэтому первоначальная классификация металлоискателей строится по диапазону рабочих частот:
  1. Сверхнизкочастотные (СНЧ) – до первых сотен Гц. Абсолютно не любительские приборы: энергопотребление от десятков Вт, без компьютерной обработки по сигналу ни о чем судить нельзя, для перемещения нужен автотранспорт.
  2. Низкочастотные (НЧ) – от сотен Гц до нескольких кГц. Просты схемотехнически и конструктивно, помехоустойчивы, но мало чувствительны, дискриминация плохая. Проницание – до 4-5 м при энергопотреблении от 10 Вт (т. наз. глубинные металлодетекторы) или до 1-1,5 м при питании от батареек. Реагируют острее всего на ферромагнитные материалы (черный металл) или большие массы диамагнитных (бетонные и каменные строительные конструкции), поэтому иногда называются магнитодетекторами. К свойствам грунта мало чувствительны.
  3. Повышенной частоты (ПЧ) – до нескольких десятков кГц. Сложнее НЧ, но требования к катушке невысоки. Проницание – до 1-1,5 м, помехоустойчивость на троечку, хорошая чувствительность, удовлетворительная дискриминация. Могут быть универсальными при использовании в импульсном режиме, см. ниже. На обводненных или минерализованных грунтах (с обломками или частицами скальных пород, экранирующих ЭМП) работают плохо или вовсе ничего не чуют.
  4. Высокой, или радиочастоты (ВЧ или РЧ) – типичные металлоискатели «на золото»: отличная дискриминация на глубину до 50-80 см в сухих непроводящих и немагнитных грунтах (пляжный песок и т.п.) Энергопотребление – как в пред. п. Остальное – на грани «неуда». Эффективность прибора во многом зависит от конструкции и качества исполнения катушки (катушек).

Примечание: мобильность металлоискателей по пп. 2-4 хорошая: от одного комплекта солевых элементов («батареек») АА и без переутомления оператора можно работать до 12 час.

Особняком стоят импульсные металлоискатели. У них первичный ток в катушку поступает импульсами. Задав частоту следования импульсов в пределах НЧ, а их длительность, которая определяет спектральный состав сигнала, соответствующей диапазонам ПЧ-ВЧ, можно получить металлодетектор, совмещающий в себе положительные свойства НЧ, ПЧ и ВЧ или перестраиваемый.

Метод поиска

Насчитывается не менее 10 методов поиска предметов с помощью ЭМП. Но такие, как, скажем, метод непосредственной оцифровки ответного сигнала с компьютерной обработкой – удел профессионального применения.

Самодельный металлоискатель схемотехнически строят более всего следующими способами:

  • Параметрическим.
  • Приемо-передающим.
  • С накоплением фазы.
  • На биениях.

Без приемника

Параметрические металлоискатели в некотором роде выпадают из определения принципа действия: в них нет ни приемника, ни приемной катушки. Для детекции используется непосредственно влияние объекта на параметры катушки генератора – индуктивность и добротность, а структура ЭМП значения не имеет. Изменение параметров катушки ведет к изменению частоты и амплитуды вырабатываемых колебаний, что фиксируется разными способами: измерением частоты и амплитуды, по изменению тока потребления генератора, измерением напряжения в петле ФАПЧ (системы фазовой автоподстройки частоты, «подтягивающей» ее к заданному значению) и др.

Параметрические металлоискатели просты, дешевы и помехоустойчивы, но пользование ими требует определенных навыков, т.к. частота «плывет» под влиянием внешних условий. Чувствительность у них слабая; более всего используются как магнитодетекторы.

С приемником и передатчиком

Устройство приемопередающего металлоискателя показано на рис. в начале, к пояснению принципа действия; там же описан и принцип работы. Такие приборы позволяют добиться наилучшей эффективности в своем диапазоне частот, но сложны схемотехнически, требуют особо качественной системы катушек. Приемопередающие металлоискатели с одной катушкой называются индукционными. Их повторяемость лучше, т.к. проблема правильного расположения катушек относительно друг друга отпадает, но схемотехника сложнее – нужно выделить слабый вторичный сигнал на фоне сильного первичного.

Примечание: в импульсных приемопередающих металлоискателях от проблемы выделения также удается избавиться. Объясняется это тем, что в качестве вторичного сигнала «ловят» т. наз. «хвост» переизлученного объектом импульса. Первичный импульс вследствие дисперсии при переизлучении расплывается, и часть вторичного импульса оказывается в промежутке между первичными, откуда ее несложно выделить.

До щелчка

Металлоискатели с накоплением фазы, или фазочувствительные, бывают либо однокатушечными импульсными, либо с 2-мя генераторами, работающими каждый на свою катушку. В первом случае используется тот факт, что импульсы при переизлучении не только расплываются, но и задерживаются. Во времени сдвиг фаз нарастает; когда он достигает определенной величины, дискриминатор срабатывает и в наушниках раздается щелчок. По мере приближения к объекту щелчки становятся чаще и сливаются в звук все более высокого тона. Именно на этом принципе построен «Пират».

Во втором случае техника поиска та же, но работают 2 строго симметричных электрически и геометрически генератора, каждый на свою катушку. При этом вследствие взаимодействия их ЭМП происходит взаимная синхронизация: генераторы работают в такт. При искажении общего ЭМП начинаются срывы синхронизации, слышимые как те же щелчки, а затем тон. Двухкатушечные металлоискатели со срывом синхронизации проще импульсных, но менее чувствительны: проницание их в 1,5-2 раза меньше. Дискриминация в обоих случаях близка к отличной.


Фазочувствительные металлодетекторы – любимые инструменты курортных старателей. Асы поиска настраивают свои приборы так, что точно над объектом звук снова пропадает: частота следования щелчков переходит в ультразвуковую область. Таким способом на ракушечном пляже удается находить золотые серьги размером с ноготь на глубине до 40 см. Однако на грунте с мелкими неоднородностями, обводненном и минерализованном, металлоискатели с накоплением фазы уступают прочим, кроме параметрических.

По писку

Биения 2-х электросигналов – сигнал с частотой, равной сумме или разности основных частот исходных сигналов или кратных им – гармоник. Так, напр., если на входы специального устройства – смесителя – подать сигналы с частотами 1 МГц и 1 000 500 Гц или 1,0005 МГц, а к выходу смесителя подключить наушники или динамик, то услышим чистый тон 500 Гц. А если 2-й сигнал будет 200 100 Гц или 200,1 кГц, случится то же самое, т.к. 200 100 х 5 = 1 000 500; мы «поймали» 5-ю гармонику.

В металлоискателе на биениях действуют 2 генератора: опорный и рабочий. Катушка колебательного контура опорного маленькая, защищенная от посторонних влияний, или его частота стабилизирована кварцевым резонатором (попросту – кварцем). Контурная катушка рабочего (поискового) генератора – поисковая, и его частота зависит от наличия предметов в зоне поиска. Перед поиском рабочий генератор настраивают на нулевые биения, т.е. до совпадения частот. Полного нуля звука как правило не добиваются, а настраивают до очень низкого тона или хрипа, так удобнее искать. По изменению тона биений судят о наличии, величине, свойствах и расположении объекта.

Примечание: чаще всего частоту поискового генератора берут в несколько раз ниже опорной и работают на гармониках. Это позволяет, во-первых, избежать вредного в данном случае взаимного влияния генераторов; во-вторых, точнее настроить прибор, в-третьих, вести поиск на оптимальной в данном случае частоте.

Металлоискатели на гармониках в общем сложнее импульсных, однако работают на любом грунте. Правильно изготовленные и настроенные, они не уступают импульсным. Об этом можно судить хотя бы по тому, что золотоискатели-пляжники никак не сойдутся во мнениях, что же лучше: импульсник или на биениях?

Катушка и прочее

Самое распространенное заблуждение начинающих радиолюбителей – абсолютизация схемотехники. Мол, если схема «крутая», то все будет тип-топ. Относительно металлоискателей это вдвойне неверно, т.к. их эксплуатационные достоинства сильнейшим образом зависят от конструкции и качества изготовления поисковой катушки. Как выразился некий курортный старатель: «Находимость детектора должна тянуть карман, а не ноги».

При разработке прибора его схему и параметры катушки подгоняют друг к другу до получения оптимума. Определенная схема с «чужой» катушкой если и заработает, то до заявленных параметров не дотянет. Поэтому, выбирая прототип для повторения, смотрите прежде всего описание катушки. Если оно неполное или неточное – лучше строить другой прибор.

О размерах катушки

Большая (широкая) катушка эффективнее излучает ЭМП и глубже «просветит» грунт. Ее зона поиска шире, что позволяет уменьшить «находимость ногами». Однако, если в зоне поиска окажется крупный ненужный предмет, его сигнал «забьет» слабый от искомой мелочи. Поэтому желательно брать или делать металлодетектор, рассчитанный на работу с катушками разного размера.

Примечание: типичные диаметры катушек 20-90 мм для поиска арматуры и профилей, 130-150 мм «на пляжное золото» и 200-600 мм «на большое железо».

Монопетля

Традиционный тип катушки детектора металла т. наз. тонкая катушка или Mono Loop (одинарная петля): кольцо из многих витков эмалированного медного провода шириной и толщиной раз в 15-20 меньше среднего диаметра кольца. Достоинства катушки-монопетли – слабая зависимость параметров от типа грунта, сужающаяся книзу зона поиска, что позволяет, двигая детектор, точнее определять глубину и расположение находки, и конструктивная простота. Недостатки – малая добротность, отчего в процессе поиска «плывет» настройка, подверженность помехам и расплывчатая реакция на объект: работа с монопетлей требует значительного опыта пользования данным конкретным экземпляром прибора. Самодельные металлоискатели начинающим рекомендуется делать с монопетлей, чтобы без особых проблем получить работоспособную конструкцию и приобрести с ней поисковый опыт.

Индуктивность

При выборе схемы, чтобы убедиться в достоверности обещаний автора, и тем более при самостоятельном конструировании или доработке, нужно знать индуктивность катушки и уметь ее рассчитывать. Даже если вы делаете металлоискатель из покупного набора, индуктивность все равно нужно проверить измерениями или расчетом, чтобы не ломать потом голову: почему, все вот вроде исправно, а не пищит.

Калькуляторы для расчета индуктивности катушек имеются в интернете, но компьютерная программа все случаи практики предусмотреть не может. Поэтому на рис. дана старая, десятилетиями проверенная номограмма для расчета многослойных катушек; тонкая катушка – частный случай многослойной.

Для расчета поисковой монопетли номограммой пользуются следующим образом:

  • Берем величину индуктивности L из описания прибора и размеры петли D, l и t оттуда же или по своему выбору; типичные значения: L = 10 мГн, D = 20 см, l = t = 1 см.
  • По номограмме определяем количество витков w.
  • Задаемся коэффициентом укладки k = 0,5, по размерам l (высота катушки) и t (ширина ее) определяем площадь сечения петли и находим площадь чистой меди в ней как S = klt.
  • Поделив S на w, получим сечение обмоточного провода, а по нему – диаметр провода d.
  • Если получилось d = (0,5…0,8) мм, все ОК. В противном случае увеличиваем l и t при d>0,8 мм или уменьшаем при d<0,5 мм.

Помехоустойчивость

Монопетля хорошо «ловит» помехи, т.к. устроена точно так же, как рамочная антенна. Увеличить ее помехоустойчивость можно, во-первых, поместив обмотку в т. наз. экран Фарадея (Faraday shield): металлическую трубку, оплетку или обмотку из фольги с разрывом, чтобы не образовался короткозамкнутый виток, который «съест» все ЭМП катушки, см. рис. справа. Если на исходной схеме возле обозначения поисковой катушки есть пунктирная линия (см. схемы далее), то это значит, что катушка данного прибора обязательно должна быть помещена в экран Фарадея.

Также обязательно экран соединяется с общим проводом схемы. Тут таится подвох для новичков: заземляющий проводник нужно подключать к экрану строго симметрично разрезу (см. тот же рис.) и подводить его к схеме также симметрично относительно сигнальных проводов, иначе помехи все-таки «пролезут» в катушку.

Экран поглощает и некоторую долю поискового ЭМП, что снижает чувствительность прибора. Особенно этот эффект заметен в импульсных металлоискателях; их катушки вообще нельзя экранировать. В таком случае увеличения помехозащищенности можно добиться, симметрируя обмотку. Суть в том, что для удаленного источника ЭМП катушка – точечный объект, и э.д.с. помех в ее половинах подавят друг друга. Симметричная катушка может понадобиться и схемно, если генератор двухтактный или индуктивная трехточка.

Однако симметрировать катушку привычным радиолюбителям бифиллярным способом (см. рис.) в данном случае нельзя: при нахождении в поле бифиллярной катушки проводящих и/или ферромагнитных предметов ее симметрия нарушается. Т.е., помехоустойчивость металлоискателя пропадет как раз тогда, когда она больше всего нужна. Поэтому симметрировать катушку-монопетлю нужно перекрестной намоткой, см. тот же рис. Ее симметрия не нарушается ни при каких обстоятельствах, но мотать тонкую катушку с большим количеством витков перекрестным способом – адский труд, и тогда лучше сделать корзиночную катушку.

Корзинка

Корзиночные катушки имеют все достоинства монопетель в еще большей степени. Вдобавок, катушки-корзинки стабильнее, их добротность выше, а то, что катушка плоская – двойной плюс: чувствительность и дискриминация возрастут. К помехам корзиночные катушки менее восприимчивы: вредные э.д.с. в перекрещивающихся проводах гасят друг друга. Единственный минус – для катушек-корзинок нужна точно сделанная жесткая и прочная оправка: общая сила натяжения многих витков достигает больших величин.

Корзиночные катушки конструктивно бывают плоскими и объемными, но электрически объемная «корзинка» эквивалентна плоской, т.е. создает такое же ЭМП. Объемная корзиночная катушка еще менее чувствительна к помехам и, что важно для импульсных металлоискателей, дисперсия импульса в ней минимальна, т.е. легче поймать дисперсию, вызванную объектом. Преимущества оригинального металлоискателя «Пират» во многом обусловлены тем, что его «родная» катушка – объемная корзинка (см. рис.), однако ее намотка сложна и трудоемка.

Новичку самостоятельно лучше мотать плоскую корзинку, см. рис. ниже. Для металлоискателей «на золото» или, скажем, для описанных далее металлоискателя-«бабочки» и простого приемопередающего 2-катушечного хорошей оправкой будут негодные компьютерные диски. Их металлизация не повредит: она очень тонкая и никелевая. Непременное условие: нечетное, и никак иначе, число прорезей. Номограмма для расчета плоской корзинки не требуется; расчет ведут таким образом:

  • Задаются диаметром D2, равным внешнему диаметру оправки минус 2-3 мм, и берут D1 = 0,5D2, это оптимальное соотношение для поисковых катушек.
  • По формуле (2) на рис. вычисляют количество витков.
  • По разности D2 – D1 с учетом коэффициента плоской укладки 0,85 вычисляют диаметр провода в изоляции.

Как не надо и надо мотать корзинки

Некоторые любители берутся самостоятельно мотать объемные корзинки способом, показанным на рис. ниже: делают оправку из изолированных гвоздей (поз. 1) или саморезов, мотают по схеме, поз. 2 (в данном случае, поз. 3, для количества витков, кратного 8; через каждые 8 витков «узор» повторяется), затем запенивают, поз. 4, оправку вытаскивают, а лишнюю пену обрезают. Но вскоре оказывается, что натянутые витки порезали пену и вся работа пошла всмятку. Т.е., чтобы намотать надежно, нужно отрезки прочного пластика вклеить в отверстия основы, и только тогда мотать. И помните: самостоятельный расчет объемной корзиночной катушки без соответствующих компьютерных программ невозможен; методика для плоской корзинки в данном случае неприменима.

ДД катушки

ДД в данном случае значит не дальнодействие, а двойной или дифферециальный детектор; в оригинале – DD (Double Detector). Это катушка из 2-х одинаковых половин (плеч), сложенных с некоторым пересечением. При точном электрическом и геометрическом балансе плеч ДД поисковое ЭМП стягивается в зону пересечения, справа на рис; слева – катушка-монопетля и ее поле. Малейшая неоднородность пространства в зоне поиска вызывает разбаланс, и появляется резкий сильный сигнал. ДД-катушка позволяет неопытному искателю обнаружить мелкий глубокий хорошо проводящий предмет, когда рядом с ним и выше залегла ржавая банка.

Катушки ДД четко ориентированы «на золото»; все металлоискатели с маркировкой GOLD комплектуются ими. Однако на мелко-неоднородных и/или проводящих грунтах они или вовсе отказывают, или часто дают ложные сигналы. Чувствительность ДД катушки очень высока, но дискриминация близка к нулевой: сигнал или предельный, или его вовсе нет. Поэтому металлодетекторы с ДД катушками предпочитают искатели, которых интересует только «находимость на карман».

Примечание: подробнее о ДД катушках можно будет узнать далее в описании соответствующего металлоискателя. Мотают плечи ДД или внавал, как монопетлю, на специальной оправке, см. далее, или корзинками.

Как крепить катушку

Готовые каркасы и оправки для поисковых катушек продаются в широком ассортименте, но с накрутками продавцы не стесняются. Поэтому многие любители делают основу катушки из фанеры, слева на рис.:

Несколько конструкций

Параметрические

Самый простой металлоискатель для поиска арматуры, проводки, профилей и коммуникаций в стенах и перекрытиях можно собрать по рис. Древний транзистор МП40 безо всякого меняется на КТ361 или его аналоги; чтобы применить транзисторы pnp, нужно поменять полярность батарейки.

Этот металлоискатель – магнитодетектор параметрического типа, работающий на НЧ. Тон звука в наушниках можно менять, подбирая емкость С1. Под влиянием объекта тон понижается, в отличие от всех прочих типов, поэтому изначально нужно добиваться «комариного писка», а не хрипа или ворчания. Прибор отличает проводку под током от «пустой», на тон накладывается гул 50 Гц.

Схема – импульсный генератор с индуктивной обратной связью и стабилизацией частоты LC-контуром. Контурная катушка – выходной трансформатор от старого транзисторного приемника или маломощный «базарно-китайский» низковольтный силовой. Очень хорошо подходит трансформатор от негодного источника питания польской антенны, в его же корпусе, срезав сетевую вилку, можно собрать и все устройство, тогда запитать его лучше от литиевой батарейки-таблетки на 3 В. Обмотка II на рис. – первичная или сетевая; I – вторичная или понижающая на 12 В. Именно так, генератор работает с насыщением транзистора, что обеспечивает ничтожное энергопотребление и широкий спектр импульсов, облегчающий поиск.

Чтобы превратить трансформатор в датчик, его магнитопровод нужно разомкнуть: снять каркас с обмотками, убрать прямые перемычки сердечника – ярма – а Ш-образные пластины сложить в одну сторону, как справа на рис., затем надеть обмотки обратно. При исправных деталях прибор начинает работать сразу; если нет – нужно поменять местами концы любой из обмоток.

Параметрическая схема посложнее – на рис. справа. L с конденсаторами С4, С5 и С6 настраивается на 5, 12,5 и 50 кГц, а кварц пропускает на измеритель амплитуды 10-ю, 4-ю гармоники и основной тон соответственно. Схемка более на любителя попаять на столе: возни с настройкой много, а «чутье», как говорят, никакое. Приводится только для примера.

Приемопередающий

Гораздо чувствительнее приемопередающий металлоискатель с ДД катушкой, который можно без особого труда сделать в домашних условиях, см. рис. Слева – передатчик; справа – приемник. Там же описаны свойства разных типов ДД.

Этот металлоискатель – НЧ; поисковая частота около 2 кГц. Глубина обнаружения: советский пятак – 9 см, консервная жестянка – 25 см, канализационный люк – 0,6 м. Параметры «троечные», но можно освоить методику работы с ДД, прежде чем переходить к более сложным конструкциям.

Катушки содержат по 80 витков провода ПЭ 0,6-0,8 мм, намотанных внавал на оправку толщиной 12 мм, чертеж которой показан на рис. слева. Вообще прибор к параметрам катушек не критичен, были бы точно одинаковы и расположены строго симметрично. В целом, хороший и дешевый тренажер для тех, кто хочет освоить любую технику поиска, в т.ч. «на золото». Хотя чувствительность этого металлоискателя и невысока, но дискриминация очень хорошая несмотря на использование ДД.

Для налаживания прибора сначала вместо L1 передатчика включают наушники и по тону в них убеждаются, что генератор работает. Затем закорачивают L1 приемника и подбором R1 и R3 устанавливают на коллекторах VT1 и VT2 соответственно напряжение, равное примерно половине напряжения питания. Далее R5 выставляют ток коллектора VT3 в пределах 5..8 мА, размыкают L1 приемника и все, можно искать.

С накоплением фазы

Конструкции в этом разделе показывают все преимущества метода накопления фазы. Первый металлоискатель преимущественно строительного назначения обойдется очень недорого, т.к. его самые трудоемкие части сделаны… из картона, см. рис.:

Наладки прибор не требует; интегральный таймер 555 – аналог отечественной ИМС (интегральной микросхемы) К1006ВИ1. Все преобразования сигнала происходят в ней; способ поиска – импульсный. Единственное условие – динамик нужен пьезоэлектрический (кристаллический), обычный динамик или наушники перегрузят ИМС и она скоро выйдет из строя.

Индуктивность катушки – около 10 мГн; рабочая частота – в пределах 100-200 кГц. При толщине оправки в 4 мм (1 слой картона) катушка диаметром 90 мм содержит 250 витков провода ПЭ 0,25, а 70-мм – 290 витков.

Металлоискатель «Бабочка», см. рис. справа, по своим параметрам уже близок к профессиональным приборам: советский пятак находит на глубине 15-22 см в зависимости от грунта; канализационный люк – на глубине до 1 м. Действует на срывах синхронизации; схема, плата и вид монтажа – на рис. ниже. Учтите, здесь 2 отдельные катушки диаметром 120-150 мм, а не ДД! Пересекаться они не должны! Оба динамика – пьезоэлектрические, как и в пред. случае. Конденсаторы – термостабильные, слюдяные или высокочастотные керамические.

Свойства «Бабочки» улучшатся, а настроить ее будет проще, если, во-первых, намотать катушки плоскими корзинками; индуктивность определяется по заданной рабочей частоте (до 200 кГц) и емкостям контурных конденсаторов (по 10 000 пФ на схеме). Диаметр провода – от 0,1 до 1 мм, чем больше, тем лучше. Отвод в каждой катушке делается от трети витков считая от холодного (нижнего по схеме) конца. Во-вторых, если отдельные транзисторы заменить 2-х транзисторной сборкой для схем дифусилителей К159НТ1 или ее аналогами; выращенная на одном кристалле пара транзисторов имеет совершенно одинаковые параметры, что важно для схем со срывом синхронизации.

Для налаживания «Бабочки» нужно точно подогнать индуктивности катушек. Автор конструкции рекомендует раздвигать-сдвигать витки или подстраивать катушки ферритом, но с точки зрения электромагнитной и геометрической симметрии лучше будет подключить параллельно емкостям по 10 000 пФ подстроечные конденсаторы на 100-150 пФ и крутить их при настройке в разные стороны.

Собственно налаживание несложно: только что собранный прибор пищит. Поочередно подносим к катушкам алюминиевую кастрюльку или пивную банку. К одной – писк становится выше и громче; к другой – ниже и тише или вовсе замолкает. Здесь чуть-чуть добавляем емкости подстроечника, а в противоположном плече убираем. За 3-4 цикла можно добиться полной тишины в динамиках – прибор готов к поиску.

Еще о «Пирате»

Вернемся к прославленному «Пирату»; он импульсный приемопередающий с накоплением фазы. Схема (см. рис.) очень прозрачна и может считаться классикой для данного случая.

Передатчик состоит из задающего генератора (ЗГ) на том же 555-м таймере и мощного ключа на Т1 и Т2. Слева – вариант ЗГ без ИМС; в нем придется выставить по осциллографу частоту следования импульсов 120-150 Гц R1 и длительность импульса 130-150 мкс R2. Катушка L – общая. Ограничитель на диодах D1 и D2 на ток от 0,5 А спасает усилитель приемника QP1 от перегрузки. На QP2 собран дискриминатор; вместе они составляют сдвоенный операционный усилитель К157УД2. Собственно «хвостики» переизлученных импульсов накапливаются в емкости С5; когда «резервуар переполняется», на выходе QP2 проскакивает импульс, который усиливается Т3 и дает щелчок в динамике. Резистором R13 регулируется скорость заполнения «резервуара» и, следовательно, чувствительность прибора. Еще о «Пирате» можно узнать из видео:

Видео: металлоискатель “Пират”

а об особенностях его настройки – из следующего ролика:

Видео: настройка порога металлоискателя “Пират”

На биениях

Желающие ощутить все прелести процесса поиска на биениях со сменными катушками могут собрать металлоискатель по схеме на рис. Его особенность, во-первых, экономичность: вся схема собрана на КМОП-логике и в отсутствие объекта потребляет очень маленький ток. Второе – прибор работает на гармониках. Опорный генератор на DD2.1-DD2.3 стабилизирован кварцем ZQ1 на 1 МГц, а поисковый на DD1.1-DD1.3 работает на частоте около 200 кГц. При настройке прибора перед поиском нужную гармонику «ловят» варикапом VD1. Смешение рабочего и опорного сигналов происходит в DD1.4. Третье – этот металлоискатель пригоден для работы со сменными катушками.

ИМС 176-й серии лучше заменить на такие же 561-й, ток потребления уменьшится, а чувствительность прибора возрастет. Заменять старые советские высокоомные наушники ТОН-1 (лучше ТОН-2) на низкоомные от плеера просто так нельзя: они перегрузят DD1.4. Нужно либо поставить усилитель вроде «пиратского» (C7, R16, R17, T3 и динамик на схеме «Пирата»), либо использовать пьезодинамик.

Настройки после сборки этот металлоискатель не требует. Катушки – монопетли. Их данные на оправке толщиной 10 мм:

  • Диаметр 25 мм – 150 витков ПЭВ-1 0,1 мм.
  • Диаметр 75 мм – 80 витков ПЭВ-1 0,2 мм.
  • Диаметр 200 мм – 50 витков ПЭВ-1 0,3 мм.

Проще не бывает

Теперь выполним данное вначале обещание: расскажем, как сделать, ничегошеньки не смысля в радиотехнике, металлодетектор, который ищет. Металлоискатель «проще простого» собирается из радиоприемника, калькулятора, картонной или пластиковой коробки с откидной крышкой и отрезков двухстороннего скотча.

Металлоискатель «из радио» импульсный, однако для обнаружения объектов используется не дисперсия и не запаздывание с накоплением фазы, а поворот магнитного вектора ЭМП при переизлучении. На форумах об этом устройстве пишут разное, от «супер» до «отстой», «разводка» и слов, которые на письме употреблять не принято. Так вот, чтобы получилось если не «супер», но хотя бы вполне работоспособное устройство, его составные части – приемник и калькулятор – должны удовлетворять определенным требованиям.

Калькулятор нужен самый раздрянной и дешевый, «альтернативный». Делают такие в оффшорных подвальчиках. О нормах на электромагнитную совместимость бытовой техники там понятия не имеют, а если о чем-то таком и слыхали, то чхать хотели от души и свысока. Поэтому тамошние изделия являются довольно мощными источниками импульсных радиопомех; их дает тактовый генератор калькулятора. В данном случае его строб-импульсы в эфире используются для зондирования пространства.

Приемник нужен тоже дешевый, от подобных производителей, без всяких средств повышения помехоустойчивости. В нем должен быть АМ диапазон и, что абсолютно необходимо, магнитная антенна. Поскольку приемники с приемом коротких волн (КВ, SW) на магнитную антенну редко продаются и стоят дорого, придется ограничиться средними волнами (СВ, MW), но зато это облегчит настройку.

  1. Разворачиваем коробку с крышкой в книжку.
  2. На тыльные стороны калькулятора и радио наклеиваем полоски скотча и закрепляем оба устройства в коробке, см. рис. справа. Приемник – желательно в крышке, чтобы был доступ к органам управления.
  3. Включаем приемник, ищем настройкой на максимальной громкости вверху АМ диапазона (диапазонов) участок, свободный от радиостанций и как можно более чистый от эфирных шумов. Для СВ это будет в районе 200 м или 1500 кГц (1,5 МГц).
  4. Включаем калькулятор: приемник должен загудеть, захрипеть, зарычать; в общем, дать тон. Громкость не убираем!
  5. Если тона нет, осторожно и плавно подстраиваемся, пока не появится; это мы поймали какую-то из гармоник строб-генератора калькулятора.
  6. Потихоньку складываем «книжку», пока тон не ослабеет, не станет более музыкальным или вовсе не пропадет. Скорее всего это случится при развороте крышки около 90 градусов. Таким образом мы нашли положение, в котором магнитный вектор первичных импульсов ориентирован перпендикулярно оси ферритового стержня магнитной антенны и она их не принимает.
  7. Фиксируем крышку в найденном положении пенопластовым вкладышем и резинкой или подпорками.

Примечание: в зависимости от конструкции приемника возможен обратный вариант – для настройки на гармонику приемник кладут на включенный калькулятор, а затем, раскладывая «книжечку», добиваются смягчения или пропадания тона. В таком случае приемник будет ловить отраженные от объекта импульсы.

А что же дальше? Если вблизи раскрыва «книжки» окажется электропроводящий или ферромагнитный предмет, он станет переизлучать зондирующие импульсы, но их магнитный вектор повернется. Магнитная антенна их «почует», приемник опять даст тон. Т.е., мы уже что-то нашли.

Нечто странное напоследок

Есть сообщения еще об одном металлоискателе «для полных чайников» с калькулятором, только вместо радио нужны якобы 2 компьютерных диска, CD и DVD. Еще – пьезонаушники (именно пьезо, по уверениям авторов) и батарейка «Крона». Откровенно говоря, выглядит данное творение техномифом, вроде приснопамятной ртутной антенны. Но – чем черт не шутит. Вот вам видео:

попробуйте, если желаете, авось что-то там и отыщется, и в предметном и в научно-техническом смысле. Удачи!

В качестве приложения

Схем и конструкций металлоискателей насчитываются сотни, если не тысячи. Поэтому в приложение к материалу даем еще список моделей, кроме упомянутых в тесте, имеющих, как говорится, хождение в РФ, не чрезмерно дорогих и доступных для повторения или самосборки:

  • Клон.
  • 8 оценок, среднее: 4,88 из 5)

Моделист-конструктор 1998 №7

Разработанный мною металлодетектор пока не применялся ни в миротворческих операциях по выявлению и обезвреживанию минных полей, ни в крупномасштабных геологических или археологических изысканиях. Рассчитанный не на профессионалов, а на любителей, чьё желание «заглянуть под землю» способна удовлетворить конструкция с параметрами, приведёнными в таблице, он представляет собой улучшенный вариант «металлоискателя на биениях».

Чувствительность у прибора повышена за счёт выгодного использования (чёткой фиксации) зависимости длительности зондирующего импульса от интенсивности самих посылок с введением в поисковый генератор автоматической подстройки частоты (АПЧ). Причём дополнительных мер для стабилизации напряжения и температурной компенсации электронных блоков не потребовалось.

А предсказываемые скептиками «непримиримые противоречия» (мол, изменение частоты у поискового колебательного контура при попадании металла в рабочую зону несовместимо с нормальным функционированием системы АПЧ) разрешила сама практика. Оказалось, что при перемещении датчика над исследуемой поверхностью со скоростью 0,5-1 м/с схема прибора вовсе не вступает в конфликт с автоподстройкой частоты, имеющей значительную инерционность (большую постоянную времени).

Уже из анализа блок-схемы видно, что изготовить такой прибор заведомо сложнее, чем любой из прежних менее чувствительных аналогов, включая металлоискатели, опубликованные в № 8"85 и 4"96 журнала «Моделист-конструктор». Ведь у предлагаемой мною разработки, помимо стандартного набора из образцового кварцевого (1) и измерительного (2) генераторов, выносной катушки индуктивности L (поисковой рамки-датчика), смесителя (3) и звукового регистратора ВА (телефонного капсюля), - налицо новые, существенно улучшающие эксплуатационные характеристики, устройства. Это и интегратор (4), вырабатывающий пилообразный сигнал с амплитудой, пропорциональной управляющей частоте биений, и формирователь импульса записи (5), который совместно с ключом (6) и истоковым повторителем VT представляют собой аналоговое запоминающее устройство, фиксирующее пиковое напряжение с интегратора.

Не обходится металлодетектор без компаратора (7), обеспечивающего автоматический перевод электроники из зоны максимальной чувствительности в область регистрации биений «один к одному» (и наоборот), без специального генератора ГУН (8), преобразующего напряжение, сформированное на истоковом повторителе, в электрические колебания частотой 200-8000 Гц. а также без упомянутой выше оригинальной системы автоподстройки частоты АПЧ (9) с особым узлом, замедляющим реакцию прибора на чрезмерно резкое изменение управляющего напряжения- Имеется здесь и ряд других технических решений, среди которых, конечно же, нельзя не выделить «операционник» и спецсмеситель (10).

Как показывает практика, именно такой состав устройств при выбранном способе формирования звукового сигнала позволяет прослушивать обе частоты одновременно, существенно облегчая начальную настройку прибора на определённую чувствительность. И надёжность обеспечивается достаточно высокая. Даже в экстремальной ситуации, когда, скажем, поисковая рамка-датчик приближается к массивному металлическому предмету на расстояние, при котором разностная частота становится почти критической (70 Гц), сбоев в работе не возникает - в головных телефонах слышна только изменяющаяся частота биений.

Теперь о частностях, нашедших своё отражение на принципиальной электрической схеме. Образцовый генератор выполнен на элементе DD1.1. Его частота стабилизирована кварцевым резонатором ZQ1, включённым в цепь положительной обратной связи. Для обеспечения возбуждения генератора при включении питания служит резистор R1. Имеющийся здесь же буферный элемент DD1.2 разгружает генератор, а также формирует сигнал с цифровыми уровнями. Резистор R2 определяет степень нагрузки и максимум мощности, рассеиваемой на кварцевом резонаторе.

Рис. 1. Блок-схема металлодетектора.

Рис. 2. Эпюры напряжений и токов в контрольных точках прибора.

Данный генератор может работать практически с любыми резонаторами при токе потребления 500-800 мкА. А идущий за ним делитель частоты на два (элемент DD2.1) формирует сигнал с симметричным меандром, необходимый для нормальной работы смесителя.

Измерительный генератор собран по схеме несимметричного мультивибратора (транзисторы VT1 и VT2). Выход на режим самовозбуждения обеспечивает цепь положительной обратной связи на конденсаторе С7. Частотозадающими элементами служат С3 - С5, VD1 и поисковая катушка-датчик L1. Причём генерация осуществляется в пределах от 500 кГц до 700 кГц, в зависимости от имеющегося кварцевого резонатора.

Схема металлодетектора

Такой важный параметр, как кратковременная нестабильность, у данного генератора невелик. Уход частоты за первые 10 с сразу после включения питания составляет не более 0,7 Гц (а через каждые 30 мин - до 20 Гц), хотя для нормальной работы прибора считается приемлемым даже 1 Гц за 1 мин (без АПЧ).

Выдаваемый измерительным генератором синусоидальный сигнал, имея амплитуду 1 - 1,2 В, поступает через разделительный конденсатор С9 на триггер DD3.2, который формирует прямоугольные импульсы с цифровыми уровнями и скважностью 2. R5R6 - делитель, необходимый для нормальной работы этого участка схемы. Ну a DD3.3 выполняет роль буферного каскада. Сигнал с него подается на смеситель (Т-триггep DD2.2). Туда же поступает частота от делителя образцового генератора.

Особенности работы DD2.2 таковы, что если на входы С и D этого логического элемента приходят две импульсные последовательности, близкие по частоте, то на выходах формируется сигнал разностной частоты со строго симметричным меандром. Причём все, снимаемое с вывода 12 смесителя, имеет форму, представленную на рисунке 2а.

Прямой, а также задержанный (рис. 26) проинвертированный (благодаря цепи R8C11 и элементу DD4.2) сигналы суммируются на ключе DD5.1, выполняющем роль логического И/ИЛИ с формированием коротких положительных импульсов записи (рис. 2в) для работы аналогового запоминающего устройства (DD5.2, С13. VT3). Но это ещё не все. Снимаемый с выхода DD4.2 сигнал приходит на интегратор, выполненный по классической схеме с использованием VD2, R10 - R11, DA1, C12. Резистор R11 ограничивает ток перезаряда конденсатора С12, разгружая выход элемента DD4.2.

Проинтегрированный сигнал (рис. 2г) через ключ DD5.2. которым управляют импульсы с DD5.1, подается на запоминающую ёмкость С13, где формируется и до нового цикла записи удерживается с высокой точностью напряжение, равное пиковому значению того, что поступает от интегратора (рис. 2д). Конденсатор С14 сглаживает эффект типа «ступенька», который может возникнуть при резкой смене частот биений (рис. 2е).

С истокового повторителя сигнал поступает на компаратор DD4.3, ГУН (генератор, управляемый напряжением) и в цепь петли АПЧ. Делитель R21R22 совместно с R23 и R24 обратной связи сужают диапазон управляющего напряжения до амплитуды 1,2 В. Операционный усилитель DA2 сравнивает полученное с тем, что задано делителем R26R29, и формирует напряжение управления варикапом VD1.

Резистором R26 можно устанавливать начальную точку захвата АПЧ (чувствительность) грубо, a R27 - точно. Более того, при перемещении движка R26 в сторону крайнего (верхнего либо нижнего по схеме) положения легко выходить из зоны захвата АПЧ (±300 Гц), осуществляя режим с частотой биений «один к одному», что делает работу с прибором более гибкой.

Для уяснения особенностей функционирования узла, замедляющего реакцию АПЧ на резкое изменение частоты биений, предположим, что на базе транзистора VT4 имеется, к примеру, некоторое установившееся U б. Допустим также, что в какой-то момент происходит резкое изменение частоты биений и, соответственно, напряжения на С14. Исправная схема нашего металлодетектора обязательно отзовётся на такую «вводную»» адекватным отклонением U б транзистора VT4 от прежнего значения (благодаря большим номиналам R19, R20 и С16). А вот ответом на плавное изменение частоты биений непременно будет реакция в виде медленного изменения названных напряжений.

Когда в зону чувствительности поисковой рамки-датчика попадает металлический предмет и находится там относительно долго, на базе VT4 устанавливается напряжение, которого обычно хватает для возврата на заданный частотный режим. Но при резком отводе датчика в сторону ситуация изменяется, U б транзистора VT4 не сможет быстро вернуться на предыдущий уровень. То есть создаются условия для перехода через «0» (возникновения положительной обратной связи). Чтобы последнее исключить, введено шунтирование R19 диодом VD3, через который происходит быстрый разряд ёмкости С16 (возврат U б на установленный уровень).

Фактически АПЧ имеет (в зависимости от того, в какую сторону происходит изменение частоты биений) две постоянные времени. А так как особое выполнение датчика практически нивелирует влияние ферромагнитных свойств обнаруживаемых предметов на увеличение f поискового генератора то и АПЧ, и прибор в целом работают во всех режимах весьма корректно. ГУН (DD4.4, и R18, С15) преобразует напряжение, изменяющееся с частотой биений, в частоту. А настроенный с помощью делителя R16R17 компаратор DD4.3 разрешает ему это делать в зоне максимальной чувствительности.

Частота ГУН поступает на вход А смесителя (ключ DD5.4). На вход СО приходят от логического элемента DD4.1 и разностная f биений, и сформированный дифференцирующей цепью C10R9 (для лучшего звучания головных телефонов, уменьшения потребляемой мощности) короткий отрицательный импульс. В результате на выходе смесителя присутствует или промодулированная частота ГУН, или только частота биений. Причём переход с одного режима на другой схема выполняет автоматически. Переменный резистор R30 служит нагрузкой и регулятором громкости, а совмещённый с ним SA1 - выключателем электропитания.

Использование микросхем серии КМОП, операционных усилителей, работающих в микротоковом режиме, позволило сократить ток потребления до уровня 6 мА, сделав приемлемым использование батареи «Крона» в качестве источника электропитания.

Как и другие аналоги (включая опубликованные в «Моделисте-конструкторе» № 8"89 и 4"96), почти весь металлодетектор смонтирован на печатной плате из односторонне фольгированного стеклотекстолита. Поисковый генератор помещён в экранирующую коробку из жести. За габариты платы вынесены лишь регулировочные сопротивления R26, R27, R30, гнезда подключения источника питания и головных телефонов, а также рамка-датчик.

Печатная плата устройства

DD1 К561ЛА8; DA1-DA2 КР140УД1208; DD2 К561ТМ2; VT1-VT3 КП303А;
DD3 К176ЛП4; VT4 КТ3102Г; VD1 Д902; VD2-VD3 КД522

Топология печатной платы

Технология и тщательность изготовления рамки-датчика настолько важны для работоспособности всего металлодетектора, что требуют, видимо, более детального изложения. В качестве основы здесь использован жгут, составленный из одиннадцати 1100-мм отрезков провода ПЭВ2-1,2. Плотно обернув слоем изоленты, его втискивают в алюминиевую трубку, имеющую внутренний диаметр 10 мм и длину 960 мм. Полученной заготовке придают форму прямоугольной рамки 300x200 мм с закруглёнными углами.

Конец первого из проводов, помещённых в алюминиевом корпусе - электростатическом экране, последовательно припаивают к началу второго и так далее до образования своеобразной 11-витковой катушки индуктивности. Спайки изолируют друг от друга бумажной лентой и заливают эпоксидной смолой, исключая при этом появление короткозамкнутого витка за счёт самой согнутой в рамку трубки.

Рамка металлодетектора

Желательно здесь же предусмотреть любой закрытый высокочастотный разъём и подходящее (не металлическое) крепление для штанги-рукоятки, в качестве которой можно использовать одну-две секции от разборного удилища. Кабель, соединяющий рамку с блоком, лучше использовать коаксиальный, телевизионный, например, РК75.

Дроссель L2 поискового генератора (обозначение здесь и далее - согласно рис. 1 и в соответствии с принципиальной электрической схемой металлодетектора, опубликованной в предыдущем номере журнала) имеет 450 витков провода ПЭЛ1-0,01. Намотка - внавал на каркасе диаметром 4 и длиной 15 мм с ферромагнитным сердечником М600НН (можно применить подходящую контурную катушку от старого радиоприёмника). Индуктивность такого дросселя 1-1,2 мГн.

В приборе использованы конденсаторы КСО или КТК (С3, С4, С5), КЛС или KM (С1, С2, С6 - С13, С15), К50-6 или К53-1 (С14, С16, С17). Есть выбор и резисторов. В частности, для «подстроечников» R26, R27 подойдут СП5-2 или СП-3. То же самое можно сказать о переменном R30, только он должен быть совмещён с выключателем.

Все остальные резисторы - МЛТ-0,125 (ВС-0,125).

Цифровые МС можно заменить аналогами из хорошо зарекомендовавшей себя серии К176. DD1, DD3 - любые из того же ряда, лишь бы содержали требуемое количество инверторов.

Допускают замену и транзисторы. В качестве VT1 и VT2, например, подойдут КП303Б (-Ж). На месте VT3 приемлем КП303 или КП305 (буквенный индекс в конце наименования в данном случае роли не играет), а КТ3102Г (VT4) заменит КТ3102Е.

Кварц - из тех, что рассчитаны на 1,0-1,4 мГц. Выбор головных телефонов тоже не ограничен. Как свидетельствует практика, вполне подойдут ТОН-1 или ТОН-2. Варикап Д901 можно заменить на Д902. Диоды VD2 и VD3 КД522 (КД523) с любым буквенным индексом.

Для настройки собранного прибора потребуются осциллограф и...аккуратность в работе. Тщательно осмотрев весь монтаж, на схему подают электропитание. Затем проверяют ток потребления, который у правильно выполненной работоспособной конструкции должен составлять 5.5 - 6,5 мА. При выходе за указанные значения ищут и устраняют ошибки в пайке и т.д.

В функционировании образцового генератора убеждаются по наличию на выводе 1 микросхемы DD2 частоты, равной 0,5f кварцевого резонатора со скваженостью 2. Потом переходят к «поисковику.» В контрольную точку на печатной плате, где сходятся R3 и С8, подают половину напряжения питания, отсоединив при этом выход микросхемы DA2. И осциллографом, подключённым к стоку транзистора VT2, проверяют амплитуду выходного напряжения. Она должна быть от 1 В до 1,2 В. Если отклонение превышает 0,1 В. корректируют число витков в дросселе L2.

А с помощью конденсаторов С3 и С4 выставляют оптимальную частоту сигнала, равную 0.5f кварца Причём сам датчик должен располагаться не ближе двух метров от металлических предметов. При необходимости, подбирая R5, стремятся получить симметричный выходной сигнал на выводе 9 микросхемы DD3 (при этом смеситель должен выдавать сигнал разностной частоты с меандром, равным 2). Затем, установив изменением напряжения на варикапе частоту биений, равную 8-9 Гц, замеряют сигнал на выводе 6 интегратора DA1 - он должен быть «на грани ограничения снизу». Соответствующую же корректировку осуществляют подбором номинала у резистора R10.

Присоединив осциллограф к истоку транзистора VT3, проверяют изменение уровня напряжения в зависимости от частоты биений. Резисторами R16 и R17 добиваются, чтобы логический ноль на выходе компаратора (вывод 10 микросхемы DD4) появлялся только тогда, когда f биений станет выше 70 Гц.

ГУН подстраивают с помощью резистора R15 так, чтобы генератор начинал работать, когда сигнал интегратора «выходил из ограничения снизу». В дальнейшем это существенно упростит корректировку прибора перед работой, гак как минимальная частота ГУН и будет соответствовать настройке металлодетектора на максимальную чувствительность.

Восстановив на печатной плате специально отпаянное ранее соединение R3 и С8 с DA2, переходят к заключительному этапу отладки прибора. Движок «подстроечника» R26 поворачивают в крайнее(«плюсовое»)положение, что будет соответствовать максимальной частоте биений (причём f поискового генератора > f образцового.

Затем, медленно вращая движок в обратную сторону, начинают контролировать сигнал на выводе 6 DA1. Замечают, как (при определённом положении движка R26) на экране осциллографа вырисовывается момент попадания сигнала в зону захвата АПЧ.

Продолжая поворот ручки подстроечного резистора R27, добиваются частоты биений, равной 10 Гц, одновременно проверяя работу АПЧ (по стремлению сигнала вернуться в исходное состояние).

Движки резисторов R26, R27 необходимо перемещать медленно, учитывая большую инерционность АПЧ. При этом в головных телефонах будут прослушиваться минимальная частота ГУН и слабые щелчки с f биений. В некоторых случаях может возникнуть эффект «плавания» звука относительно некоторого фиксированного состояния. В этом случае необходимо более точно подобрать соотношение резисторов R23, R24 или уменьшить номиналы R19, R20.

Как уже отмечалось, электронную часть металлодетектора (а это почти и есть весь прибор) можно смонтировать в любом подходящем корпусе, закреплённом на ручке. Необходимо позаботиться, чтобы поисковая рамка-датчик, а также соединительные провода были жёстко закреплены относительно друг друга. Ведь даже незначительные вибрации этих деталей, возникающие при передвижении оператора, способны породить ложный сигнал (особенно при максимальной чувствительности схемы и недостаточном опыте работы с прибором). По той же причине лопатку следует носить за спиной штыком вверх (подальше от рамки-датчика). А металлические наконечники на шнурках ботинок оператора вообще недопустимы. Привносимые ими помехи грозят свести на нет все усилия сверхчуткого прибора отыскать в земле то, с чем она столь неохотно расстается.

Работа с металлодетектором мало чем отличается от действий с современным ручным миноискателем. Конечно же, столь точным приборам нужна юстировка. В нашем конкретном случае - это поворот движка подстроечного резистора R26 в крайнее («плюсовое») положение, a R27 - в среднее. Подав на аппаратуру электропитание, вращают ручку регулировки R26 в противоположную сторону до появления в головных телефонах сигнала ГУН. После этого подстроенным резистором R27 устанавливают требуемую чувствительность. А с помощью R26 произвольно выставляют (при работе с прибором в режиме биений «один к одному») f биений в пределах 200-300 Гц.

АПЧ и ГУН, по сути, отключены, поэтому поиск ведут как обычно. Для более четкого определения места расположения мелких предметов рамку-датчик подносят к зоне поиска либо горизонтально (закруглённым углом вперёд), либо под наклоном 45-90° к исследуемой поверхности (с явным позиционным преимуществом одной из боковин рамки).

Ю. СТАФИЙЧУК, Республика Молдова

Приборный поиск имеет просто огромную популярность. Ищут взрослые и дети, и любители и профессионалы. Ищут клады, монеты, потерянные вещи и закопанный металлолом. А главным орудием для поиска является металлоискатель .

Существует великое множество различных металлоискателей, на любой «вкус и цвет». Но для многих людей покупка готового фирменного металлоискателя просто финансово накладна. А кому то хочется собрать металлоискатель своими руками, а кто-то даже строит свой небольшой бизнес на их сборке.

Самодельные металлоискатели

В этом разделе нашего сайта о самодельных металлоискателях , буду собранны: лучшие схемы металлоискателей , их описания, программы и другие данные для изготовления металлоискателя своими руками . Здесь не будит схем металлоискателей из СССР и схем на двух транзисторах. Так как такие металлоискатели лишь подходят для наглядной демонстрации принципов металлодетекции, но совсем не пригодны для реального использования.

Все металлоискатели в этом разделе будут достаточно технологичными. Они будут иметь хорошие поисковые характеристики. И грамотно собранный самодельный металлоискатель немногим будит уступать заводским аналогам. В основном тут представлены различные схемы импульсных металлоискателей и схемы металлоискателей с дискриминацией металлов .

Но для изготовления этих металлоискателей, вам понадобится не только желание, но еще и определенные навыки и умения. Схемы приведенных металлоискателей, мы постарались разбить по уровню сложности.

Кроме основных данных необходимых для сборки металлоискателя, будет также информация о необходимом минимальном уровне знаний и оборудования для самостоятельно изготовления металлоискателя.

Для сборки металлоискателя своими руками вам обязательно понадобится:

В этом списке будут приведены необходимые инструменты, материалы и оборудование, для самостоятельной сборки всех без исключения металлоискателей. Для многих схем вам также понадобится различное дополнительное оборудования и материалы, тут только основное для всех схем.

  1. Паяльник, припой, олово и другие паяльные принадлежности.
  2. Отвертки, плоскогубцы, кусачки и прочий инструмент.
  3. Материалы и навыки по изготовлению печатной платы.
  4. Минимальный опыт и знания в электронике и электротехники также.
  5. А также прямые руки — будут очень полезны при сборке металлоискателя своими руками.

У нас вы можете найти схемы, для самостоятельной сборки следующих моделей металлоискателей:

Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска
есть
Рабочая частота 4 — 17 кГц
Уровень сложности Средний

Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1-1,5 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4 — 16 кГц
Уровень сложности Средний

Принцип работы IB
Дискриминация металлов есть
Максимальная глубина поиска 1 — 2 метра (Зависит от размера катушки)
Программирумые микроконтроллеры есть
Рабочая частота 4,5 — 19,5 кГц
Уровень сложности Высокий