Приставка к зарядному для защиты аккумулятора. Приставка автомат к зарядному устройству Приставка автомат к зарядному устройству на реле

А. Коробков

Дополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи - как только напряжение на ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8...13 В зарядка возобновится.

Приставка может быть выполнена в виде отдельного блока либо, встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата приведена на рис. 1.


Она состоит из тринистора VS1, узла управления тринистором А1, выключателя автомата SА1 и двух цепей индикации - на светодиодах НL1 и НL2. Первая цепь индицирует режим зарядки, вторая - контролирует надежность подключения аккумуляторной батареи к зажимам приставки-автомата. Если в зарядном устройстве есть стрелочный индикатор - амперметр, первая цепь индикации не обязательна.

Узел управления содержит триггер на транзисторах VТ2, VТ3 и усилитель тока на транзисторе VT1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним и нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Транзистор VT1 подключен базовой цепью к триггеру и работает в режиме электронного ключа. Коллекторная же цепь транзистора соединена через резисторы R2, R3 и участок управляющий электрод - катод тринистора с минусовым выводом зарядного устройства. Таким образом, базовая и коллекторная цепи транзистора VT1 питаются от разных источников: базовая - от аккумуляторной батареи, а коллекторная - от зарядного устройства.

Тринистор VS1 выполняет роль коммутирующего элемента. Использование его вместо контактов электромагнитного реле, которое иногда применяют в этих случаях, обеспечивает большое число включений - выключений зарядного тока, необходимых для подзарядки аккумуляторной батареи во время длительного хранения.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом - к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего напряжения на выходе зарядного устройства через управляющий электрод,тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VТ1). А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того, подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройства (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SА1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через резистор R2 управляющий электрод тринистора окажется подключенным непосредственно к выводам зарядного устройства. Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Транзистор VT1 может быть указанной на схеме серии с буквенными индексами А - Г; VТ2 и VТ3 - КТ603А - КТ603Г; диод VD1 -любой из серий Д219, Д220 либо другой кремниевый; стабилитрон VD2 - Д814А, Д814Б, Д808, Д809; тринистор - серии КУ202 с буквенными индексами Г, Е, И, Л, Н, а также Д238Г, Д238Е; светодиоды - любые из серий АЛ102, АЛ307 (ограничительными резисторами R1 и R11 устанавливают нужный прямой ток используемых светодиодов).

Постоянные резисторы - МЛТ-2 (R2), МЛТ-1 (R6), МЛТ-0,5 (R1, R3, R8, R11), МЛТ-0,25 (остальные). Подстроечный резистор R9 - СП5-16Б, но подойдет другой, сопротивлением 330 Ом...1,5 кОм. Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2)


Из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм.

Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив оси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SА1.

Для установки тринистора можно изготовить теплоотвод общей площадью около 200 см2. Подойдет, например, пластина дюралюминия толщиной 3 мм и размерами 100X100 мм. Теплоотвод прикрепляют к одной из стенок корпуса (скажем, задней) на расстоянии около 10 мм - для обеспечения конвекции воздуха. Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Перед креплением узла управления его нужно проверить и определить положение движка подстроечного резистора. К точкам 1, 2 платы подключают выпрямитель постоянного тока с регулируемым выходным напряжением до 15 В, а цепь индикации (резистор R1 и светодиод НL1) -к точкам 2 и 5. Движок подстроечного резистора устанавливают в нижнее по схеме положение и подают на узел управления напряжение около 13 В. Светодиод должен гореть. Перемещением движка подстроечного резистора вверх по схеме добиваются погасания светодиода. Плавно увеличивая напряжение питания узла управления до 15 В и уменьшая до 12 В, добиваются подстроечным резистором, чтобы светодиод зажигался при напряжении 12,8... 13 В и погасал при 14,2..14,7 В.

Зарядное устройство.

В сборнике «В помощь радиолюбителю» № 87 было помещено описание автоматического зарядного устройства К. Кузьмина, которое в условиях хранения аккумулятора в зимнее время позволяет автоматически включать его на зарядку при снижении напряжения и также автоматически выключать зарядку при достижении напряжения, соответствующего полностью заряженному аккумулятору. Недостатком этой схемы является ее относительная сложность, так как управление включением и выключением зарядки осуществляется двумя раздельными узлами. На рис. 1 приведена электрическая принципиальная схема зарядного устройства, свободная от этого недостатка: указанные функции осуществляются одним узлом.


Схема обеспечивает два режима работы - ручной и автоматический.

В ручном режиме работы тумблер SА1 находится во включенном -состоянии. После включения тумблера Q1 напряжение сети поступает на первичную обмотку трансформатора Т1 и загорается индикаторная лампочка HL1. Переключателем SА2 устанавливается необходимый ток зарядки, который контролируется амперметром РА1. Напряжение контролируется вольтметром РU1. Работа схемы автоматики на процесс зарядки в ручном режиме не влияет.

В автоматическом режиме тумблер SА1 разомкнут. Если напряжение аккумуляторной батареи меньше 14,5 В, напряжение на выводах стабилитрона VD5 получается меньше, чем необходимо для его отпирания, и транзисторы VТ1, VТ2 заперты. Реле К1 обесточено и его контакты К1.1 и К1.2 замкнуты. Первичная обмотка трансформатора Т1 подключена к сети через контакты реле К 1.1. Контакты реле К 1.2 замыкают переменный резистор R3. Происходит зарядка аккумуляторной батареи. При достижении напряжения на аккумуляторе 14,5 В стабилитрон VD5 начинает проводить ток, что приводит к отпиранию транзистора VТ1, а следовательно, и транзистора VТ2. Срабатывает реле и контактами К1.1 выключает питание выпрямителя. Благодаря размыканию контактов К1.2 в цепь делителя напряжения включается дополнительный резистор R3. Это приводит к увеличению напряжения на стабилитроне, который теперь остается в проводящем состоянии даже после того, как напряжение на аккумуляторной батарее окажется меньше 14,5 В. Зарядка аккумулятора прекращается и наступает режим хранения, в процессе которого происходит медленный саморазряд. В этом режиме схема автоматики получает питание от аккумуляторной батареи. Стабилитрон VD5 перестанет пропускать ток только после того, как напряжение аккумуляторной батареи понизится до 12,9 В. Тогда вновь запрутся транзисторы VТ1 и VТ2, реле обесточится и контактами К1.1 включит питание выпрямителя. Вновь начнется зарядка аккумулятора. Контакты К1.2 также замкнутся, напряжение на стабилитроне дополнительно понизится, и он начнет пропускать ток только после того, как напряжение на аккумуляторе увеличится до 14,5 В, то еcть когда аккумулятор будет полностью заряжен.

Настройка узла автоматики зарядного устройства производится следующим образом. Соединитель ХР1 к сети не подключается. К соединителю ХР2 вместо аккумуляторной батареи присоединяется стабилизированный источник постоянного тока с регулируемым выходным напряжением, которое устанавливается по вольтметру, равным 14,5 В. Движок переменного резистора R3 устанавливается в нижнее по схеме положение, а движок переменного резистора R4 - верхнее по схеме положение. При этом транзисторы должны быть заперты, а реле обесточено. Медленно вращая ось переменного резистора R4, нужно добиться срабатывания реле. Затем на клеммах соединителя Х2 устанавливается напряжение 12,9 В и медленным вращением оси переменного резистора R3 нужно добиться отпускания реле. В связи с тем что при отпускании реле резистор R3 замыкается контактами К1.2, эти регулировки оказываются независимыми одна от другой. Сопротивления резисторов делителя напряжения R2-R5 рассчитаны таким образом, что срабатывание и отпускание реле должны происходить соответственно при напряжениях 14,5 и 12,9 В в средних положениях переменных резисторов R3 и R4. Если необходимы другие значения напряжений срабатывания и отпускания реле, а пределов регулировки переменными резисторами окажется недостаточно, придется подобрать сопротивления постоянных резисторов R2 и R5.

В зарядном устройстве может быть применен такой же сетевой трансформатор, как и в устройстве К. Казьмина, но без обмотки III. Реле - любого типа с двумя группами размыкающих или переключающих контактов, надежно работающее при напряжении 12 В. Можно, например, использовать реле РСМ-3 паспорт РФ4.500.035П1 или РЭС6 паспорт РФ0.452.125Д.

Электронный сигнализатор зарядки аккумуляторной батареи.

А. Коробков

Чтобы продлить срок эксплуатации автомобильной аккумуляторной батареи, необходим эффективный контроль за режимом ее зарядки. Описываемое устройство сигнализирует водителю, когда напряжение на аккумуляторной батарее повышено и когда оно понижено, а генератор не работает. В случае повышенного потребления тока в бортовой сети при малой частоте вращения ротора генератора сигнализатор не срабатывает.

При разработке устройства ставилась цель разместить его в корпусе имеющегося в автомобиле сигнального реле РС702, что обусловило особенности конструкции сигнализатора и типы примененных транзисторов.

Принципиальная схема электронного сигнализатора вместе с цепями связи его с элементами бортовой сети приведена на рис. 1.


На транзисторах VT2, VT3 выполнен триггер Шмитта, на VT1 -узел запрета его срабатывания. В коллекторную цепь транзистора VT3 включена индикаторная лампа HL1, размещенная на приборном щитке. В горячем состоянии нить накала имеет сопротивление около 59 Ом. Сопротивление холодной нити в 7... 10 раз ниже. В связи с этим vтранзистор VT3 должен выдерживать бросок тока в коллекторной цепи до 2,5 А. Этому требованию удовлетворяет транзистор КТ814.

Аналогичные транзисторы используются и в качестве VT1 и VT2. Но здесь причиной их выбора послужило стремление получить малые геометрические размеры устройства - три транзистора устанавливают один под другим и закрепляют общим винтом с гайкой.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R5R6 подается на базу транзистора VT2. Если оно выше 13,5 В, триггер Шмитта переключается в состояние, при котором выходной транзистор VT3 закрыт и лампа HL1 не горит.

База транзистора VT2 через стабилитрон VD1 и делитель R1R2 соединена также со средней точкой обмотки генератора. При исправном генераторе в ней относительно его плюсового вывода создается пульсирующее напряжение с амплитудой, равной половине генерируемого напряжения. Поэтому, если даже из-за большой токовой нагрузки в бортовой сети напряжение упадет ниже 13,5 В, ток с делителя R1R2 поступает в базу транзистора VT2 и не разрешает горение лампы. Чтобы исключить запрещение на включение сигнализации, когда отсутствует ток в обмотке возбуждения генератора, используется цепь, состоящая из делителя R1R2 и стабилитрона VD1. Она предотвращает попадание тока утечки через выпрямительные диоды генератора (в худшем случае до 10 мА) в базу транзистора VT2.

Напряжение бортовой сети за вычетом напряжения на стабилитроне VD2 через делитель R3R4 подается также на базу транзистора VT1, участок коллектор - эмиттер которого шунтирует базовую цепь транзистора VT2. При напряжении сети выше 15 В транзистор VT1 переходит в режим насыщения. При этом триггер Шмитта переключается в состояние, при котором транзистор VT3 открыт и, следовательно, зажигается лампа HL1.

Таким образом, лампа красного света на приборном щитке загорается, когда отсутствует ток зарядки и напряжение сети ниже 13,5 В, а также когда оно выше 15 В.

При использовании в автомобиле электронного регулятора напряжения, не имеющего отдельного провода к клемме аккумуляторной батареи, из-за падения напряжения (около 0,1...0,2 В) в цепи до входной клеммы регулятора (чаще всего в режиме холостого хода) при выключенных потребителях тока наблюдается кратковременное периодическое пропадание зарядного тока от генератора. Длительность и период такого эффекта обусловлены временем спадания напряжения на аккумуляторной батарее на 0,1...0,2 В и временем повышения его на то же значение и составляют, в зависимости от состояния аккумуляторной батареи, около 0,3...0,6 с и 1...3 с соответственно. При этом с таким же тактом срабатывает сигнальное реле РС702, зажигая лампу. Такой эффект нежелателен. Описываемый электронный сигнализатор исключает его, так как при кратковременных пропаданиях зарядного тока напряжение в бортовой сети не достигает нижнего порога 13,5 В.

Электронный сигнализатор выполнен на базе имеющегося в автомобиле сигнального реле РС702. Само реле с гетинаксовой платы удалено (после ликвидации заклепки). Кроме того, удалены заклепка с контактного лепестка «87» и Г-образная стойка у его основания.

Элементы сигнализатора монтируют на печатной плате (рис. 2)


Из фольгированного стеклотекстолита толщиной 1,5...2 мм. Транзисторы VT1-VT3 размещены по оси центрального отверстия платы: VT3 со стороны печатного монтажа коллекторной пластиной от платы, а VT2, VT1 (в указанном порядке) - с противоположной стороны платы коллекторными пластинами в сторону платы. Перед пайкой все три транзистора нужно стянуть винтом МЗ с гайкой. Их выводы соединяют с точками плиты полуженными медными проводниками, впаянными и нужные отверстии платы. Резисторы R3 и R5 припаивают не к токопроподящим дорожкам, а к штырям из провода. Это облегчает их замену при налаживании устройства. Элементы VD1 и VD2 устанавливают вертикально жестким выводом к плате. Так же вертикально расположен конденсатор С1, помещенный в хлорвиниловую трубку по диаметру конденсатора.

В сигнализаторе следует применять резисторы (кроме R8)-ОМЛТ (МЛТ) с номиналами и мощностью рассеивания, указанными на схеме. Допуск по номиналам ±10 %. Резистор R8 изготавливают из высокоомного провода, намотанного (1-2 витка) на резистор МЛТ-0,5. Конденсатор C1 - К50-12. Транзисторы VT1 - VT3 -любые из серии КТ814 или КТ816. Элемент VD1 - стабилитрон Д814 с любым буквенным индексом, VD2 - Д814Б или Д814В.

После окончания монтажа печатной платы электронный сигнализатор собирают в такой последовательности:
снимают гайку и винт, стягивающие транзисторы;
в сквозные отверстия транзисторов VT1, VT2 помещают хлорвиниловую трубку диаметром 3 мм;
в освободившуюся от реле РС702 плату вставляют лепестки (выводы) «30/51» (в центре) и «87»; последний закрепляют винтом М3 (головкой со стороны вывода) с гайкой высотой 3 мм;
винт М2,7 длиной 15...20 мм пропускают через отверстие в плате от реле РС702 (со стороны вывода «30/51»), затем насаживают на концы винтов смонтированную плату с транзисторами;
обеспечивают контакт вывода «30/51» с коллекторной пластиной транзистора VT3 (путем ее плотного прилегания к плоской части вывода);
проверяют наличие соединения вывода «87» с печатной платой через гайку с винтом;
короткие штырьки выводов «85» и «86» подгибают так, чтобы они вошли в предназначенные для них отверстия на печатной плате;
с помощью гаек М2,7 и МЗ с шайбами скрепляют обе платы;
припаивают штырьки выводов «85» и «86» к токопроводящим дорожкам.

При налаживании сигнализатора требуются блок питания с регулируемым напряжением от 12 до 16 В и лампа мощностью 3 Вт на 12 В.

Сначала при отключенном, резисторе R5 подбирают резистор R3. Необходимо добиться, чтобы при увеличении напряжения лампа загоралась в момент достижения 14,5... 15 В. Затем подбирают резистор R5 так, чтобы лампа зажигалась, когда напряжение снижается до 13,2...13,5 В.

Налаженный сигнализатор устанавливают на место реле РС702, при этом вывод «86» соединяют с «массой» автомобиля коротким проводом под винт крепления самого сигнализатора. К остальным выводам подключают провода электрооборудования, как это предусмотрено штатной схемой автомобиля с реле РС702, т. е. к выводу «85» - провод от средней точки генератора (желтый), к «30/51» - провод от лампы индикации (черный), к «87» - провод «±12 В» (оранжевый).

Испытания сигнализатора показали следующий результат. При коротком замыкании регулятора свечение лампы наблюдается при повышении частоты вращения генератора и зависит от нее. При изъятии предохранителя в цепи регулятора лампа загорается примерно через минуту независимо от частоты вращения. Этой информации достаточно, чтобы установить причину и вид неисправности системы генератор - регулятор напряжения.

При включении зажигания через час и более после остановки двигателя индикация работает, как и с релейным сигнализатором. Если же оно включается через незначительное время (менее 5 мин), лампа - сигнализатор зарядки не зажигается, но при пуске двигателя стартером вспыхивает и гаснет, свидетельствуя об исправности сигнализатора.

Установка описанного регулятора вместо штатного РС702 в автомобилях «Жигули» (ВАЗ-2101, ВАЗ-2102, ВАЗ-2103, ВАЗ-2106 и др.) позволит однозначно предупредить водителя о всех отклонениях в режиме работы аккумуляторной батареи и сохранить ее от губительной перезарядки.
[email protected]

Эта приставка, схема которой изображена на рисунке, выполнена на мощном составном транзисторе и предназначена для зарядки автомобильной аккумуляторной батареи напряжением 12 В переменным асимметричным током. При этом обеспечивается автоматическая тренировка батареи, что уменьшает склонность ее к сульфатации и продляет срок службы. Приставка может работать совместно практически с любым двуполупериодным импульсным зарядным устройством, обеспечивающим необходимый ток зарядки, например, с промышленным Рассвет-2.

При соединении выхода приставки с батареей (зарядное устройство не подключено), когда конденсатор С1 еще разряжен, начинает течь начальный зарядный ток конденсатора через резистор R1, эмиттерный переход транзистора VT1 и резистор R2. Транзистор VT1 открывается, и через него протекает значительный разрядный ток батареи, быстро заряжающий конденсатор С1. С увеличением напряжения на конденсаторе ток разрядки батареи уменьшается практически до нуля.

После подключения зарядного устройства к входу приставки появляется зарядный ток батареи, а также небольшой ток через резистор R1 и диод VD1. При этом транзистор VT1 закрыт, поскольку падения напряжения на открытом диоде VD1 недостаточно для открывания транзистора. Диод VD3 также закрыт, так как к нему через диод VD2 приложено обратное напряжение заряженного конденсатора С1.

В начале полупериода выходное напряжение зарядного устройства складывается с напряжением на конденсаторе, и зарядка батареи происходит через диод VD2, что приводит к возврату энергии, накопленной конденсатором, в батарею. Далее конденсатор полностью разряжается и открывается диод VD3, через который теперь продолжается зарядка батареи. Снижение выходного напряжения зарядного устройства в конце полупериода до уровня ЭДС батареи и ниже приводит к смене полярности напряжения на диоде VD3, его закрыванию и прекращению зарядного тока.

При этом вновь открывается транзистор VT1 и происходит новый импульс разрядки батареи и зарядки конденсатора. С началом нового полупериода выходного напряжения зарядного устройства начинается очередной цикл зарядки батареи.

Амплитуда и длительность разрядного импульса батареи зависят от номиналов резистора R2 и конденсатора С1. Они выбраны в соответствии с рекомендациями, данными в [Л].

Транзистор и диоды размещают на отдельных теплоотводах площадью не менее 120 см 2 каждый. В приставке применен конденсатор К50-15 на максимально допустимую рабочую температуру +125 °С; его можно заменить конденсаторами больших размеров на номинальное напряжение не менее 160 В, например, К50-22, К50-27 или К50-7 (емкостью 500 мкФ). Резистор R1 -МЛТ-0,5, a R2 - С5-15 или изготовленный самостоятельно.

Кроме указанного на схеме транзистора КТ827 А, можно использовать КТ827Б, КТ827В. В приставке могут быть применены транзисторы КТ825Г - КТ825Е и диоды КД206А, но при этом полярность включения диодов, конденсатора, а также входных и выходных зажимов приставки нужно изменить на противоположную.

В статье рассматривается схема несложного устройства, дополнив которым ваше зарядное устройство (ЗУ), процесс зарядки может быть автоматизирован. Так же оно поможет содержать ваш аккумулятор в заряженном состоянии в период длительного хранения, что способствует значительному увеличению его срока службы.

Устройства представляет собой электронное реле, следящее за напряжением подключенного аккумулятора. Реле имеет два порога срабатывания по наибольшему и наименьшему значению напряжения, выставленным в процессе наладки.

Контактная группа К1.1 подключается в разрыв одного из проводов, идущего на клеммник для подключения аккумуляторной батареи. Устройство также запитано с этого клеммника.

Настройка устройства. Для настройки узла понадобится источник питания с регулируемым значением напряжения. Подаем питание на вход XS1 (рис. 1). Устанавливаем движок резистора R 2 в верхнее по схеме положение, а R3 в нижнее. Выставляем значение напряжения 14,5 В. При этом транзистор VT 2 должен быть закрыт, а реле К1 должно быть обесточено. Регулировкой R 3 добиваемся срабатывания реле К1. Теперь устанавливаем напряжение в 12,9 В, регулировкой R 2 добиваемся выключения К1.

Т.к контакты реле К1.2, в отключенном состоянии, шунтируют резистор R 2, настройки срабатывания и отключения К1 являются независимыми друг от друга.

О деталях устройства. Резисторы R 2, R 3 подстроечные, тип СП-5, прецизионный стабилитрон Д818 можно заменить на два включенных встречно Д814 с близкими значениями стабилизации напряжения. Реле К1 с напряжением питания 12 В, с двумя группами нормальнозамкнутых контактов. Контактная группу К1.1, должна быть рассчитанна на ток зарядки аккумулятора.

Эта конструкция подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Она выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и ёмкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и применённого шунта). (См. Рис.1 и Рис.2 )

Рис.1

Рис.2

Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания.

Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G.

Максимальная зарядная ёмкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 3.

Рис.3. Принципиальная схема приставки для измерения ёмкости зарядки

Подключение к зарядному устройству - на Рис 4 .


Рис.4 Схема подключения приставки к зарядному устройству

При включении микроконтроллер сначала запрашивает требуемую ёмкость зарядки.
Устанавливается кнопкой SB1. Сброс - кнопкой SB2.
На выводе 2 (RA5)устанавливается высокий уровень, который включает реле P1, которое в свою очередь включает зарядное устройство (Рис.5 ).
Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений.

Алгоритм подсчёта ёмкости в данной приставке следующий:
1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счётчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного тока делятся на 60. Целое число записываются в счётчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений за 1 минуту в счётчике будет число среднего значения тока за минуту.
При переходе показаний секунд через ноль среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом счётчик ёмкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту. После этого счётчик среднего значения тока обнуляется и подсчёт начинается сначала. Каждый раз, после подсчёта ёмкости зарядки, производится сравнение измеренной ёмкости и заданной, и при их равенстве на дисплей выдаётся сообщение - "Зарядка завершена", а во второй строке - значение этой ёмкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к отключению реле. Зарядное устройство отключится от сети.


Рис.5

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R5) и входного напряжения (R4) с помощью эталонного амперметра и вольтметра.

Теперь о шунтах.
Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 0.5-10 Ом мощностью 5Вт (меньшее значение сопротивления будет вносить меньшую погрешность в измерение, но затруднит точную настройку тока при калибровки прибора), и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.
Для зарядного тока до 10А потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведённые испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А.

Печатная плата для данного устройства разрабатывалась под индикатор WH1602D. Но можно использовать любой подходящий индикатор, сотвественно перепаяв провода. Плата собрана таких же размеров как и жидкокристаллический индикатор и закреплена сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

Перед первым включением подстроечные резисторы установить в среднее положение.

В качестве шунта для варианта прошивки на малые токи можно применить 2 параллельно соединенных резистора млт-2 1 Ом.

В приставке можно применить индикатор WH1602D , но придется поменять местами выводы 1 и 2. А вообще- лучше свериться с документацией на индикатор.

Индикаторы фирмы МЭЛТ не будут работать, из-за несовместимости работы по 4-х битному интерфейсу.

При желании, можно подключить подсветку индикатора через токоограничительный резистор 100 Ом

Эту приставку можно использовать для определения емкости заряженного аккумулятора.

Рис.6. Определение емкости заряженного аккумулятора

В качестве нагрузки можно использовать любую нагрузку (Лампочку, резистор...), только при включении нужно выставить любую заведомо большую емкость аккумулятора и при этом следить за напряжением аккумулятора, чтобы не допускать глубокой разрядки.

(От автора) Приставка испытывалась с современным импульсным зарядным устройством для автомобильных аккумуляторов,
Данные устройства обеспечивают стабильное напряжение и ток с минимальными пульсациями.
При подсоединении же приставки к старому зарядному устройству (понижающий трансформатор и диодный выпрямитель) мне не удалось настроить показания зарядного тока из-за больших пульсаций.
Поэтому было решено изменить алгоритм измерения зарядного тока контроллером.
В новой редакции контроллер делает 255 измерений тока за 25 милисекунд (при 50Гц - период составляет 20 милисекунд). И из сделанных измерений выбирает самое большое значение.
Также происходит измерение входного напряжения, но выбирается наименьшее значение.
(При нулевом зарядном токе напряжение должно быть равно ЭДС аккумулятора.)
Однако при такой схеме перед стабилизатором 7805 необходимо поставить диод и сглаживающий конденсатор (>200 мкФ)на напряжение не менее выходного напряжения зарядного
устройства. Плохо сглаженное напряжение питания микроконтроллера приводило к сбоям в работе.
Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).
В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной около 20 см -прекрасно работает.

Зарядные устройства аккумуляторов автомобилей рекомендуется оснащать автоматом, подключающего его при снижении напряж. на аккумуляторе до минимального значения и выключающего по завершению заряда. В особенности это необходимо при применении в роли запасного источника питания или при продолжительном хранении батареи без эксплуатирования — для предупреждения саморазряда.

Описание работы автомата для отключения зарядного устройства

Описываемая электрическая автомата для отключения зарядного устройства вкл аккумулятор на зарядку при снижении на нем напряж. до заданного уровня и выключает при достижении максимума. Предельным напряжением для кислотных аккумуляторов автомобиля служит напряжение 14,2-14,5 вольт, а минимальным разрешенным при разряде — 10,8 вольт. Минимальное рекомендуется лимитировать для пущей надежности напряжением 11,5…12 вольт.

Приведенная электрическая схема содержит компаратор на транзисторах VT1, VT2 и ключ на VT3, VT4. Функционирует электрическая схема следующим образом. Вслед за подсоединением АБ и и подачи напряжения электросети необходимо нажать кнопку SB1 «Пуск». Транзисторы VT1 и VT2 запираются, отпирая ключ VT3, VT4, который активирует электрореле К1.

Реле своими нормально замкнутыми выводами К1.2 выключает электрореле К2, нормально замкнутые выводы которого (К2.1), подсоединяют зарядное устройство (ЗУ) к сети. Такая сложная электрическая схема подключений применяется по 2-м причинам:

  • во-первых, создается гальваническая развязка высоковольтной электроцепи от низковольтной;
  • во-вторых, для того чтобы электрореле К2 активировалось при максимальном напряж. аккумулятора и отключалось при минимальном, т.к. используемое электрореле РЭС22 (паспорт РФ 4500163) имеет рабочее напряжение равное 12…12,5 В.

Контакты К1.1 электрореле К1 переводятся в нижнее по схеме положение. В течении заряда аккумулятора потенциал на сопротивлениях R1 и R2 увеличивается, и при достижении на базе VT1 открывающего напряжения, транзисторы VT1 и VT2 отпираются, запирая ключ VT3, VT4.

Реле К1 выключается, включая К2. Нормально замкнутые выводы К2.1 размыкаются и отключают зарядное устройство. Выводы К1.1 переключаются в верхнее по схеме положение. Сейчас потенциал на базе составного транзистора VT1, VT2 обусловливается падением напряж. на сопротивлениях R1 и R2. В ходе разряда АБ потенциал на базе VT1 уменьшается, и в определенный момент VT1, VT2 закрываются, открывая ключ VT3, VT4. Вновь осуществляется цикл заряда. Емкость С1 предназначена для ликвидации помех от дребезга контактов К1.1 в время переключения.

Настройка автомата для отключения зарядного устройства

Настройку прибора делают без аккумулятора и зарядного устройства. Нужен регулируемый блок питания с пределами регулировки 10…20 В. Его подсоединяют к контактам электрической схемы взамен GB1. Движок сопротивления R1 переводят в верхнее положение, а движок R5 — в нижнее. Напряжение источника делают равным мин напряжению аккумулятора (11.5…12 В).

Двигая движок R5 добиваются включения электрореле К1 и светодиода VD7. Потом, увеличивая напряжение блока питания до 14,2…14,5 вольт, перемещением движка потенциометра R1 добиваются выключения К1 и светодиода. Меняя напряжение блока питания в обе стороны, убеждаются, что подключение автомата совершается при напряж. 11,5…12 В, а выключение — при 14,2…14,5 В. На этом настройка заканчивается. В роли R1 и R5 рекомендуется применять многооборотные переменные резисторы марки СП5-3 или похожие.

К.Селюгин, г.Новороссийск