Простой индикатор состояния литиевых аккумуляторов. Индикатор разряда аккумулятора на TL431 Схема индикаторы состояния li ion аккумулятора

Очередная поделка выходного дня – индикатор разряда для аккумуляторной батареи.
Батарея боится переразряда, от этого зависит срок её службы и надо контролировать её напряжение, чтоб вовремя ставить на зарядку; а мамка в ближайшее время денег на новые «батарейки» не даст.

Собираем индикатор разряда АКБ, специально для начинающих: простой, из «мусора». Вариантов в интернете миллион, я выбрал вот такую схему. Собрал на макетке, поэкспериментировал с ней – работает. Может, кому пригодится. А вот собственно и схемка:

При таких номиналах деталей я настраивал подстроечником R2 (нашел в хламе многооборотный ELECTRON на 10кОм) порог срабатывания на 8 и на 5 вольт. Гистерезис в первом случае составляет 0,4 В, во втором – 0,15 В. Кстати, подстроечник действительно лучше взять многооборотный, но только килоома на 3, ибо при уставке 8В его сопротивление равно примерно 1,6кОм, а для 5В - примерно 2,6кОм.

Изменить гистерезис можно подбором резистора R4, но если его сопротивление будет слишком малым, страдает пороговость включения: светодиод будет загораться плавно, что не есть гут; а если большим (десятки Ом) – гистерезис будет огромным, до нескольких вольт, что тоже паршиво. Ещё у меня есть сомнения по поводу термостабильности данной схемы, но в условиях комнаты работает неплохо. На схеме обозначен ток потребления при погасшем/зажженном светодиоде и напряжении на входе 5 В.
«Отака, малята, фигня…»

Ниже на фото на Макетной плате собрана и показана работа этой схемки. Итак, при напряжении 8,25 Вольт у нас светодиод не загорается.

Но как только напряжение упало до 8 Вольт, то у нас светодиод сразу же сигнализирует о малом напряжении.

Применение этой схемы можно найти в различной радиоаппаратуре, которая питается электрохимическими элементами. Можно также доработать этот каскад и вместо светодиода поставить другую цепь, которая бы включала или выключала резервное питание или зарядку на АКБ.

Думаю эта тема будет актуальна тем, у кого в пользовании более двух автомобилей. Как правило, один эксплуатируется зимой, другой — летом. То есть один из них сезон в году стоит в гараже или на стоянке. А пока он стоит там, мы не знаем, как себя чувствует его аккумулятор. Нет, конечно можно "щупать" его периодически вольтметром или купить готовый индикатор, коих много на том же Али-экспресс (например вставляющийся в прикуриватель). Но мне захотелось сделать свой индикатор, который бы показывал промежуточные значения остаточного заряда АКБ. Ну, например, — более 75%, 75%, 50% и 25% заряда. Причем хотелось бы так лениво радеть за здоровьем АКБ, чтобы лишний раз не лезть под капот авто и не распаковывать без надобности зарядное устройство.

Долго искал приемлемые схемы в инете. Собрал некоторые. Но все не то. То гистерезис срабатывания индикации такой, что лучше бы ее и не было, этой индикации, проще и надежнее тестером померить. То установки плавают и нет стабильности, то вообще яркость светодиода плавно изменяется в зависимости от напряжения на АКБ и поди узнай, что там на ней есть. И вот нашел одну схему на каком-то португальском сайте. Проста до неприличия и вроде должна работать. Построена она на операционном усилителе UA741. Вот она:

В ней я поменял только номинал стабилитрона с 6,2 в на 7,5 в. Срабатывания четкие. Светодиод загорается на нужной установке (регулируется подстроечным резистором R2). R2 лучше применять многооборотный, так как выставить им нужное напряжение не просто. Чувствительность в зоне срабатывания очень нежная и почти незримый поворот винта регулировки уносит нужное напряжение в сторону.

Настраивать необходимо, используя точный регулируемый лабораторный источник питания с цифровым вольтметром, показывающим десятые (а лучше сотые, я параллельно включал цифровой тестер) доли вольт. Поскольку я возжелал видеть степень зарядки АКБ в градациях указанных выше, я собрал схему из трех таких блоков. Вот рисунок печатки:

При полной зарядке батареи напряжение на ней выше 12,7 в, при этом ни один светодиод не горит и все прекрасно (фото 1).

Первый блок зажигает зеленый светодиод при напряжении на клеммах АКБ менее 12,5 в, что соответствует около 75% заряда АКБ (фото 2).

Второй зажигает желтый светодиод при напряжении ниже 12,2 в, что есть около 50% заряда (Фото 3).

Ну а третий, красный, загорается при напряжении ниже 11,7 в или около 25% остаточного заряда АКБ (Фото 4).

Значения установок напряжения я использовал для AGM батарей (у меня на автомобилях такие стоят). Для обычных кислотных их можно изменить на другие. Плату поместил в небольшой (40 мм х 70 мм) корпус. На корпусе разместил дополнительно малогабаритный выключатель в разрыве плюсового провода для удобства, чтобы не скидывать зажимы с клемм АКБ, когда не требуются замеры и чтобы устройство не потребляло при этом хотя и небольшой (около 20 мА, в основном определяется током горящих светодиодов) ток от батареи. К аккумулятору от устройства подключается двойной красно-черный провод с зажимами на концах (Фото 5).

Устройство подключено к клеммам аккумулятора стоящего в гараже автомобиля постоянно. Когда нужно, зайдя в гараж, без лишних "плясок" включаю выключатель на устройстве, наблюдаю, каким цветом горят "лампочки" и вижу здоров ли мой АКБ или его надо "подлечить".

Индикатор разряда аккумулятора предназначен для получения оперативного предупреждения о разряде аккумуляторной батареи, что поможет защитить вас от многих проблем. Предлагаемая схема достаточно проста, а вся регулировка заключается в выставление порога срабатывания переменным резистором для включения светодиодной индикации.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Вариант этой конструкции, но уже на операционном усилителе LM 339 подойдет для аккумуляторов с выходным напряжением 6 или 12 вольт.

В арсенале отечественных микросхем имеется серия КР1171, которые специально разработаны для контроля снижения напряжения питания. Вот и используем ее для контроля напряжения в аккумуляторной батареи.

Малый потребляемый ток в режиме «Вык.» позволяет встраивать данную конструкцию в устройства с непрерывным контролем напряжения аккумуляторной батареи. При этом индикатор можно подключить до выключателя питания устройства, напрямую к клеммам аккумуляторной батареи. Для переделки данной схемы индикатора на другое напряжение достаточно использовать соответствующую микросхему серии КР1171 и подобрать резистор R1 для нового напряжения. Исключение составляет только микросхема КР1171СП20, т. к. ее пороговый уровень 2В, а генератор на микросхеме К561ЛА7 не работает.

Для достижения минимальных размеров можно вместо динамика использовать миниатюрный излучатель. C помощью сопротивления R6 можно регулировать громкость звука.

Данная конструкция рассчитана на напряжение аккумуляторной батареи от 6 до 24 вольт.

Схема состоит из делителя напряжения на резисторах R1 R2, первый транзистор реагирует на уменьшение напряжения ниже заданного значения, а электронный ключ на втором транзисторе, через стоковую цепь запускает свepxъяркий светодиод.

При подключении схемы к аккумуляторной батареи, напряжение котopoгo необходимо контролировать, на затворе первого транзистора появляется напряжение положительной полярности, регулируемое резистором R2. Если оно выше порогового - транзистор открыт, сопротивление его канала не выше десятка Ом, поэтому напряжение на стоке второго транзистора VТ2 стремится к нулю и он закрыт, светодиод соответственно не горит, сигнализируя о том, что напряжение аккумуляторной батареи в норме. При снижении напряжения до порогового уровня, при котором напряжение на затворе первого транзистора становится ниже порогового, он закрывается, сопротивление его канала резко возрастает и напряжение на стоке стремится к значению напряжения питания. При этом открывается транзисторный ключ и светодиод загорается, говоря о недопустимой степени разряда аккумуляторной батареи.

На транзисторах VT2, VT3 построен триггер Шмитта, на VT1 - модуль запрета его срабатывания. В коллекторную цепь VT3 включен индикатор HL1, размещенный на приборной панели. В горячем состоянии нить накала индикатора обладает сопротивление в районе 50 Ом. Сопротивление холодной нити индикатора в несколько раз ниже. Поэтому транзистор VT3 выдерживает бросок тока в коллекторной цепи до уровня 2,5 А.

Напряжение бортовой сети за минусом напряжения на стабилитроне VD2 через делитель R5-R6 поступает на базу VT2. Если оно выше 13,5 В, триггер Шмитта переключается и транзистор VT3 закрыт, а HL1 не светится.

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений - от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать .

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный - чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом - переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше - тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко - между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации - 3 мА, при выключенном светодиоде - 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 - разрешено, 0 - запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector"ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD , TCM809TENB713 , MCP103T-315E/TT , CAT809TTBI-G ;
  • на 2.93V: MCP102T-300E/TT , TPS3809K33DBVRG4 , TPS3825-33DBVT , CAT811STBI-T3 ;
  • серия MN1380 (или 1381, 1382 - они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка "1" в обозначении микросхемы - MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог - КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения - чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую "моргалку" на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза - коротка вспышка - опять пауза). Это позволяет снизить потребляемый ток до смешных значений - в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом - всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы - инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 - 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914 :

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на "землю", можно перевести ее в режим "точка". В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения , т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339 .

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке .

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют ), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 - это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, .

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот - в качестве индикатора заряда.


Читатель Максим недавно прислал Li-ion аккумуляторы формата 18650, предупредив, что они не любят глубокого разряда, равно как и перезаряда (для меня, трансформаторно-сетевой души, такие вещи в новинку). Ладно, с зарядкой вопрос почти решен — Дядюшка Ляо пообещал выслать модули на TP4056. А уж с контролем низкого напряжения можно и самостоятельно разобраться, например, применив сдвоенный компаратор LM393 .


Немного теории . Литий-ионный аккумулятор 18650 называется так из-за размеров: диаметр 18 мм, длина 65 мм. Как и любой Li-ion, не имеет «эффекта памяти», не терпит полной разрядки (ниже 3 вольт лучше не разряжать) и при неправильной зарядке может взорваться. Есть модели со встроенной защитой, которая отключает батарею при глубоком разряде и по окончании зарядки, но моих это не касается.


Полностью заряженная батарея выдает 4,2 вольта. Соединив их последовательно, получаем 8,4 вольта, чего вполне хватает для работы «Спидолы 242» на свежем воздухе почти без помех и совсем без мультипликативного фона, и даже с подсветкой. Чтобы при хранении «крокодилы» случайно не замкнулись — закусываю их на ушную палочку или зубочистку. Из-под изоленты выглядывает металлическое ушко — точка соединения двух «банок».


Принцип работы . Измеряемое напряжение с делителя R1 , R2 поступает на инвертирующие входы компараторов In-1 , In-2 (оно в два раза меньше входного), а эталонное (3,3 вольта) — на прямые входы In+1 , In+2 .

Допустим, батарея полностью заряжена (8,4 вольта). Тогда на второй и шестой ногах микросхемы 4,2 вольта, что больше, чем 3,3. Красный светодиод VD2 не включен, светится зеленый VD3 . Напряжение в норме.


Батарея разрядилась до 7 вольт. Измеряемое напряжение — 3,5 вольта, все еще больше, чем 3,3, и все еще светится зеленый индикатор.


Батарея разрядилась до 6,4 вольта. Измеряемое напряжение — 3,2 вольта, что меньше, чем 3,3. Включается красный светодиод, а зеленый гаснет. Пора заряжать.

Путевые заметки:
— из экономии индикатор включается «по требованию» через тактовую кнопку;
— при длительной работе левая часть схемы (резисторы и стабилитрон) греется сильнее, чем хотелось бы;
— с помощью R3 можно немного менять пределы срабатывания компаратора: так, при 750 Омах это было 6 вольт ровно, а при подключении в параллель к ним 1,5 кОм (общее сопротивление 500 Ом) стало 6,4 вольта;
— подобрав стабилитрон VD1 и резистор R3 , можно следить за разрядом аккумуляторов на другое напряжение;


— если хочется посадить VD3 катодом на «землю» (например, в случае двухцветного светодиода), то надо подключить R5 и анод VD3 к седьмой ноге микросхемы, а In+2 и In-2 поменять местами;
— если индикация нормального напряжения не нужна, то все элементы и связи ко второму компаратору (ножки 5 -7) можно убрать.

Потрошить свою батарею и немедленно припаивать индикатор не стал — авось, не последняя, а вот изоленты жалко.



На будущее — в продаже есть модульные держатели, с помощью которых можно легко собрать воедино неограниченное количество аккумуляторов.

А вот проверенная схема всегда сгодится.

Дополнение от 15.09.16


Равно как и сгодится старый ноутбучный аккумулятор, которому можно дать второй шанс (пусть и с электроникой попроще, типа радиоприемника). Сдвоенные «банки» не стал разделять, поэтому их последовательное соединение вышло довольно длинным. Слева и справа — модули зарядки на TP4056.