Светодиоды: характеристики, маркировка и виды. Какие светодиоды используются в фонариках и какие лучше? Самый мощный светодиод для фонаря

Светодиодный фонарик.

http://ua1zh. *****/led_driver/led_driver. htm

Наступила осень, на улице уже темно, а лампочек в подъезде как не было, так и нет. Вкрутил... На следующий день - снова нет. Да, таковы реалии нашей жизни... Купил жене фонарик, но он оказался слишком большой для сумочки. Пришлось сделать самому. Схема не претендует на оригинальность, но, может, кому и сгодится - судя по инет_форумам, интерес к подобной технике не снижается. Предвижу возможные вопросы - "А не проще ли взять готовую микросхему наподобие ADP1110 и не заморачиваться?" Да, разумеется, намного проще,
вот только стоимость этой микросхемы в Чип&Дипе 120 рублей, минимальный заказ - 10шт и срок исполнения - месяц. Изготовление же данной конструкции заняло у меня ровно 1 час 12 минут, включая время на макетирование, при величине затрат 8 рублей на светодиод. Остальное у уважающего себя радиолюбителя всегда найдётся в хламовнике.

Собственно вся схема:

Ч естное слово, буду ругаться, если кто-то спросит - а на каком принципе всё это работает?

А ещё больше буду ругать ся, если потребуют печатку...

Ниже пример практического исполнения конструкции. Для корпуса взята подходящая коробочка из-под какой-то парфюмерии. При желании можно сделать фонарик ещё компактнее - всё определяется используемым корпусом. Сейчас вот думаю засунуть фонарик в корпус от толстого маркера.

Немного о деталях: Транзистор я взял КТ645. Просто вот такой под руку попался. Можно поэкспериментировать с подбором VT1, если есть время и тем самым слегка поднять КПД, но вряд ли можно достичь радикальной разницы с применённым транзистором. Трансформатор намотан на подходящем кольце из феррита с большой проницаемостью диаметром 10мм и содержит 2х20 витков провода ПЭЛ-0.31. Обмотки мотают сразу двумя проводами, можно без скрутки - это же не ШПТЛ... Выпрямительный диод - любой Шоттки, конденсаторы - танталовые smd на напряжение 6 вольт. Светодиод - любой сверхяркий белый на напряжение 3-4 вольта. При использовании в качестве батареи аккумулятора с номинальным напряжением 1.2 вольта ток через имеющийся у меня светодиод составлял 18мА, а при использовании сухой батареи с номиналом 1.5 вольта - 22 ма, что обеспечивает максимальную светоотдачу. В целом устройство потребляло примерно 30-35мА. Учитывая эпизодическое использование фонарика, батареи вполне может хватить и на год.

В момент подачи напряжения батареи на схему, падение напряжения на резисторе R1, включенным последовательно со светодиодом высокой яркости, равно 0 В. Следовательно, транзистор Q2 выключен, а транзистор Q1 находится в насыщении. Насыщенное состояние Q1 включает MOSFET транзистор, тем самым подавая напряжение батареи на светодиод через индуктивность. Так как ток, протекающий через резистор R1 возрастает, это включает транзистор Q2 и выключает транзистор Q1 и, следовательно, MOSFET транзистор. Во время выключенного состояния MOSFET транзистора, индуктивность продолжает обеспечивать питание светодиода через диод Шоттки D2. В качестве HB светодиода используется 1 Вт Lumiled светодиод белого свечения. Резистор R1 помогает управлять яркостью свечения светодиода. Увеличение номинала резистора R1 уменьшает яркость свечения. http://www. *****/shem/schematics. html? di=55155

Делаем современный фонарик

http://www. *****/schemes/contribute/constr/light2.shtml

Рис. 1. Принципиальная схема стабилизатора тока

Используя же давно известную в радиолюбительских кругах схему (рис. 1) импульсного стабилизатора тока с применением современных доступных радиодеталей можно собрать очень неплохой светодиодный фонарь.

Автором для доработки и переделки был приобретен беспородный фонарь с аккумулятором 6 В 4 Ач, с «прожектором» на лампе 4,8 В 0,75 А и источником рассеянного света на ЛДС 4 Вт. «Родная» накальная лампочка почти сразу почернела ввиду работы на завышенном напряжении и вышла из строя после нескольких часов работы. Полной зарядки аккумулятора при этом хватало на 4-4,5 часа работы. Включение ЛДС вообще нагружало аккумулятор током около 2,5 А, что приводило к его разряду через 1-1,5 часа.

Для усовершенствования фонаря на радиорынке были приобретены белые светодиоды неизвестной марки: один с лучом расходимостью 30o и рабочим током 100 мА для «прожектора» а также десяток матовых с рабочим током 20 мА для замены ЛДС. По схеме (рис.1) был собран генератор стабильного тока, имеющий КПД порядка 90%. Схемотехника стабилизатора позволила использовать для переключения светодиодов штатный переключатель. Указанный на схеме светодиод LED2 представляет собой батарею из 10 параллельно соединенных одинаковых белых светодиодов, расчитаных на силу тока 20 мА каждый. Параллельное соединение светодиодов кажется не совсем целесообразным в виду нелинейности и крутизны их ВАХ, но как показал опыт, разброс параметров светодиодов настолько мал, что даже при таком включении их рабочие токи практически одинаковы. Важно только полная идентичность светодиодов, по возможности их надо купить «из одной заводской упаковки».

После доработки «прожектор» конечно стал немного послабее, но вполне достаточен, режим рассеянного света визуально не изменился. Но теперь благодаря высокому КПД стабилизатора тока при использовании направленного режима от аккумулятора потребляется ток 70 мА, а в режиме рассеянного светамА, то есть фонарь может работать без подзарядки примерно 50 или 25 часов соответственно. Яркость от степени разряженности аккумулятора не зависит благодаря стабилизации тока.

Схема стабилизатора тока работает следующим образом: При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4 В, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 И Т2 закроются, Т3 -- откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях: особых требований к деталям не предъявляется, можно использовать любые малогабаритные резисторы и конденсаторы. Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3 А и напряжение более 30 В. Диод D1 должен быть обязательно с барьером Шоттки на ток более 1 А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%. Катушка индуктивности может быть самодельная, мотают ее проводом не тоньше 0,6 мм, лучше - жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.

Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5. При необходимости ток может быть увеличен до 1 А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.

Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.

Собирается устройство навесным монтажом в свободных полостях корпуса фонарика и заливается термоклеем для герметизации.

Неплохо также добавить в фонарь новое устройство: индикатор степени заряженности аккумулятора (рис. 2).

Рис. 2. Принципиальная схема индикатора степени зарядки аккумулятора.

Устройство представляет собой по сути вольтметр с дискретной светодиодной шкалой. Этот вольтметр имеет два режима работы: в первом он оценивает напряжение на разряжаемом аккумуляторе, а во втором -- напряжение на заряжаемом аккумуляторе. Потому, чтобы правильно оценить степень заряженности для этих режимов работы выбраны разные диапазоны напряжений. В режиме разряда аккумулятор можно считать полностью заряженным, когда на нем напряжение равно 6,3 В, когда он полностью разрядится, напряжение снизится до 5,9 В. В процессе же зарядки напряжения другие, полностью заряженным считается аккумулятор, напряжение на клеммах которого 7,4 В. В связи с этим и выработан алгоритм работы индикатора: если зарядное устройство не подключено, то есть на клемме «+ Зар.» нет напряжения, «оранжевые» кристаллы двухцветных светодиодов обесточены и транзистор Т1 заперт. DA1 формирует опорное напряжение, определяемое резистором R8. Опорное напряжение подается на линейку компараторов ОР1.1 - ОР1.4, на которых и реализован собственно вольтметр. Чтобы увидеть, сколько заряда осталось в аккумуляторе, надо нажать на кнопку S1. При этом будет подано напряжение питания на всю схему и в зависимости от напряжения на аккумуляторе загорится определенное количество зеленых светодиодов. При полном заряде будет гореть весь столбик из 5 зеленых светодиодов, при полном разряде -- только один, самый нижний светодиод. При необходимости напряжение корректируют, подбирая сопротивление резистора R8. Если включается зарядное устройство, через клемму «+ Зар.» и диод D1 напряжение поступает на схему, включая «оранжевые» части светодиодов. Кроме того, открывается Т1 и подключает параллельно резистору R8 резистор R9, в результате чего опорное напряжение, формируемое DA1 увеличивается, что приводит к изменению порогов срабатывания компараторов -- вольтметр перестраивается на более высокое напряжение. В этом режиме все время, пока аккумулятор заряжается, индикатор отображает процесс его зарядки также столбиком светящихся светодиодов, только на этот раз столбик оранжевый.

Самодельный фонарик на светодиодах

Статья посвящается туристам-радиолюбителям, и всем, кто так или иначе сталкивался с проблемой экономичного источника освещения (например палатки в ночное время). Хотя в последнее время фонарями на светодиодах никого не удивишь, я все же поделюсь своим опытом в создании подобного прибора, а также постараюсь ответить на вопросы тех, кто захочет повторить конструкцию.

Примечание: статья рассчитана на "продвинутых" радиолюбителей, хорошо знающих закон Ома и державших в руках паяльник.

За основу был взят покупной фонарик "VARTA" с питанием от двух батареек типа АА:

https://pandia.ru/text/78/440/images/image006_50.jpg" width="600" height="277 src=">

А вот как выглядит схема в собранном виде:

опорных" точек служат ножки DIP-микросхемы.

Несколько пояснений к схеме: Электролитические конденсаторы - танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки - SM5818. Дроссели пришлось соединить два в параллель, т. к. не оказалось подходящего номинала. Конденсатор С2 - К10-17б. Светодиоды - сверхяркие белые L-53PWC "Kingbright". Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.
Выходное напряжение стабилизатора в данной схеме включения равно 3.3В. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1В, то лишние 200мВ пришлось высеять на резисторе, включенном последовательно с выходом. Кроме того, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось - различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Пожалуй, это самая интересная деталь. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции. Это я решил сделать для того, чтобы не курочить фонарик, и при случае в него можно было бы вставить обычную лампочку. В результате долгих раздумий на предмет убиения двух зайцев родилась вот такая конструкция:

Думаю, что особых пояснений здесь не требуется. Потрошится родная лампочка от этого же фонарика, во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу с некоторым растопыром для большего угла охвата (пришлось немного подпилить их у основания). Плюсовые выводы (так получилось по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. В результате получается такой вот "ламподиод", встающий на место обычной лампочки накаливания.

И в заключение, о результатах испытаний. Для тестирования были взяты полудохлые батарейки, чтобы быстрее довести их до финиша и понять, на что способен новоиспеченный фонарь. Измерялось напряжение батарей, напряжение на нагрузке и ток через нагрузку. Прогон начинался с напряжения батареи 2.5В, при котором светодиоды напрямую уже не горят. Стабилизация выходного напряжения (3.3В) продолжалась вплоть до снижения напряжения питания до ~1.2В. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5В! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА. Диоды все еще горели, но их яркости хватало только на освещение замочной скважины в темном подъезде. После этого батарейки практически перестали разряжаться, т. к. схема перестала потреблять ток. Погоняв схему в таком режиме еще минут 10, мне стало скучно, и я ее выключил, т. к. дальнейший прогон интереса не представлял.

Яркость свечения сравнивалась с обычной лампочкой накаливания при такой же потребляемой мощности. В фонарик вставлялась лампочка 1В 0.068А, которая при напряжении 3.1В потребляла приблизительно такой же ток, что и светодиоды (около 100мА). Результат в пользу светодиодов однозначно.

Часть II. Немного о КПД или "Нет предела совершенству".

Прошло больше месяца с тех пор как я собрал свою первую схему для питания светодиодного фонарика и написал об этом в вышеизложенной статье. К моему удивлению, тема оказалась очень популярной, судя по количеству отзывов и посещений сайта. С тех пор у меня появилось некоторое понимание предмета:) , и я счел своим долгом подойти к теме более серьезно и провести более тщательные исследования. На эту мысль меня навело также и общение с людьми, решавшими подобные задачи. О некоторых новых результатах я и хочу рассказать.

Во-первых, мне следовало бы сразу измерить КПД схемы, который оказался подозрительно низким (около 63% при свежих батарейках). Во вторых, я понял главную причину такого низкого КПД. Дело в том, что те миниатюрные дроссели, что я использовал в схеме, имеют чрезвычайно высокое омическое сопротивление - около 1.5ом. Ни о какой экономии электроэнергии с такими потерями не могло быть и речи. В-третьих я обнаружил, что величина индуктивности и выходной емкости тоже сказываются на КПД, хотя и не так заметно.

Использовать стержневой дроссель типа ДМ как-то не хотелось из-за его большого размера, поэтому я решил изготовить дроссель самостоятельно. Идея проста - нужен маловитковый дроссель, намотанный относительно толстым проводом, и в то же время достаточно компактный. Идеальным решением оказалось кольцо из µ-пермаллоя с проницаемостью порядка 50. В продаже есть готовые дроссели на таких колечках, широко используемые во всевозможных импульсных БП. В моем распоряжении оказался такой дроссель на 10мкГ, имеющий 15 витков на кольце К10х4х5. Перемотать его не было никаких проблем. Индуктивность пришлось подобрать по измерению КПД. В диапазоне 40-90мкГ изменения были очень незначительные, меньше 40 - более заметные, а на 10мкГ стало совсем плохо. Поднимать выше 90мкГ я не стал, т. к. возрастало омическое сопротивление, а более толстый провод "раздувал" габариты. В итоге, более из эстетических соображений, я остановился на 40 витках провода ПЭВ-0.25, т. к. они ровно улеглись в один слой и получилось около 80мкГ. Активное сопротивление получилось около 0.2 ом, а ток насыщения по расчетам - более 3А, что хватает за глаза.. Выходной (а заодно и входной) электролит я заменил на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ. В результате конструкция претерпела некоторые изменения, что, впрочем, не помешало ей сохранить свою компактность:

Лабораторные работы" href="/text/category/laboratornie_raboti/" rel="bookmark">лабораторную работу и снял основные характеристики схемы:

1. Зависимость выходного напряжения, измеренного на емкости С3, от входного. Эту характеристику я снимал и раньше и могу сказать, что замена дросселя на более добротный дала более горизонтальную полочку и резкий излом.

2. Интересно было также проследить изменение потребляемого тока по мере разряда батареек. Хорошо видна типичная для ключевых стабилизаторов "отрицательность" входного сопротивления. Пик потребления пришелся на точку, близкую к опорному напряжению микросхемы. Дальнейший спад напряжения привел к снижению опоры, а значит и выходного напряжения. Резкий спад тока потребления в левой части графика вызван нелинейностью ВАХ диодов.

3. Ну и наконец, обещаный КПД. Здесь он измерялся уже по конечному эффекту, т. е. по рассеиваемой мощности на светодиодах. (Процентов 5 теряется на балластном сопротивлении). Производители чипа не наврали - при правильной схеме положенные 87% он дает. Правда это только при свежих батарейках. По мере роста потребляемого тока КПД, естественно, снижается. В экстремальной точке он вообще падает до уровня паровоза. Рост КПД при дальнейшем снижении напряжения практической ценности не представляет, т. к. фонарик уже находится "на издыхании" и светит очень слабо.

Глядя на все эти характеристики можно сказать, что фонарь уверенно светит при спаде питающего напряжения до 1В без заметного снижения яркости, т. е. схема фактически отрабатывает трехкратную просадку напряжения. Обычная лампочка накаливания при таком разряде батарей уже вряд ли будет пригодна для освещения.

Если что-то кому-то осталось неясным - пишите. Отвечу письмом, и\или дополню данную статью.

Владимир Ращенко, E-mail: rashenko (at) inp. nsk. su

май, 2003г..

Велофара - что дальше?

Итак, первая фара построена, испытана и "обкатана". Каковы дальнейшие перспективные направления светодиодного фаростроения? Первым этапом, наверное, будет дальнейшее наращивание мощности. Планирую постройку 10-диодной фары с переключаемым режимом работы 5\10. Ну а дальнейшее улучшение качества требует применения сложных микроэлектронных компонентов. Например, мне кажется, неплохо бы избавиться от гасящих\выравнивающих резисторов - ведь на них теряется 30-40% энергии. И стабилизацию тока через светодиоды независимо от разряженности источника хотелось бы иметь. Наилучшим вариантом было бы последовательное включение всей цепочки светодиодов со стабилизацией тока. А чтобы не увеличивать количество последовательных батарей, нужно чтобы эта схема еще и напряжение увеличивала с 3 или 4,5 В до 20-25 В. Такие вот, так сказать, ТУ на разработку "идеальной фары".
Оказалось, специально для решения таких задач выпускаются специализированные ИС. Область их применения - управление светодиодами подсветки ЖК-мониторов для мобильных устройств - ноутбуки. сотовые телефоны и т. д. Вывел меня на эту информацию Дима gdt (at) ***** - СПАСИБО!

В частности, линейку ИС различного назначения для управления светодиодами выпускает фирма Maxim (Maxim Integrated Products, Inc), на сайте которой (http://www. ) была найдена статья "Solutions for Driving White LEDs" (Apr 23, 2002). Некоторые из этих "решений" отлично подойдут для велофары:

https://pandia.ru/text/78/440/images/image015_32.gif" width="391" height="331 src=">

Вариант 1 . Микросхема MAX1848, управление цепочкой из 3х светодиодов.

https://pandia.ru/text/78/440/images/image017_27.gif" width="477" height="342 src=">

Вариант 3: Возможна другая схема включения обратной связи - с делителя напряжения.

https://pandia.ru/text/78/440/images/image019_21.gif" width="534" height="260 src=">

Вариант 5. Максимальная мощность, несколько цепочек светодиодов, микросхема MAX1698

токовое зеркало", микросхема MAX1916.

https://pandia.ru/text/78/440/images/image022_17.gif" width="464" height="184 src=">

Вариант 8. Микросхема MAX1759.

https://pandia.ru/text/78/440/images/image024_12.gif" width="496" height="194 src=">

Вариант 10 . Микросхема MAX619 - пожалуй. самая простая схема включения. Работоспособность при падении входного напряжения до 2 В. Нагрузка 50 мА при Uвх.>3 В.

https://pandia.ru/text/78/440/images/image026_15.gif" width="499" height="233 src=">

Вариант 12 . Микросхема ADP1110 - по слухам, более распространена, чем MAXы, работает начиная с Uвх=1,15 В (!!! всего одна батарейка!!! ) Uвых. до 12 В

https://pandia.ru/text/78/440/images/image028_15.gif" width="446" height="187 src=">

Вариант 14 . Микросхема LTC1044 - очень простая схема подключения, Uвх=от1,5 до 9 В; Uвых= до 9 В; нагрузка до 200мА (но впрочем, типовое 60 мА)

Как видите, выглядит все это весьма заманчиво:-) Осталось только где-то найти эти микросхемы незадорого....

Ура! Найдена ADP1руб. с НДС) Строим новую мощную фару!

10 светодиодов, с переключением 6\10, пять цепочек по два.

MAX1848 White LED Step-Up Converter in SOT23

MAX1916 Low-Dropout, Constant-Current Triple White LED Bias Supply

Display Drivers and Display Power Application Notes and Tutorials

Charge Pump Versus Inductor Boost Converter for White LED Backlights

Buck/Boost Charge-Pump Regulator Powers White LEDs from a Wide 1.6V to 5.5V Input

Analog ICs for 3V Systems

На сайте Rainbow Tech: Maxim: Приборы DC-DC преобразования (сводная таблица)

На сайте Premier Electric: Импульсные регуляторы и контроллеры для ИП без гальв. развязки (сводная таблица)

На сайте Averon - микросхемы для источников питания (Analog Devices) - сводная таблица

Питание светодиодов с помощью ZXSC300

Давиденко Юрий. г. Луганск
Адрес Email -
david_ukr (at) ***** (замените (at) на @)

Целесообразность использования светодиодов в фонарях, велофарах, в устройствах местного и дежурного освещениям на сегодняшний день не вызывает сомнений. Светоотдача и мощность светодиодов растет, а цены на них падают. Источников света, в которых вместо привычной лампы накаливания используются светодиоды белого свечения становиться всё больше и купить их не составляет труда. Магазины и рынки заполнены светодиодной продукцией китайского производства. Но качество этой продукции оставляет желать лучшего. По этому возникает необходимость в модернизации доступных (в первую очередь по цене) светодиодных источников света. Да и заменить лампы накаливания на светодиоды в добротных фонарях советского производства тоже имеет смысл. Надеюсь, что приведенная далее информация будет не лишней.

    Скачать статью в формате PDF - 1,95Мб (Что это такоеКб

Как известно, светодиод имеет нелинейную вольтамперную характеристику с характерной "пяткой" на начальном участке.

Рис. 1 Вольт-амперная характерисика светодиода белого свечения.

Как мы видим, светодиод начинает светиться, если на него подано напряжение больше 2,7 В. При питании его от гальванической или аккумуляторной батареи , напряжение которой процессе эксплуатации постепенно уменьшается, яркость излучения будет изменяться широких пределах. Чтобы избежать, этого необходимо питать светодиод стабилизированным током. А ток должен быть номинальным для данного типа светодиода. Обычно для стандартных 5-мм светодиодов он составляет среднем 20 мА.

По этой причине приходится применять электронные стабилизаторы тока, которые ограничивают стабилизируют ток, протекающий через светодиод. Часто бывает необходимо запитать светодиод от одного или двух элементов питания напряжением 1,2 – 2,5 В. Для этого используют повышающие преобразователи напряжения. Поскольку любой светодиод является, по сути, токовым прибором, точки зрения энергоэффективности выгодно обеспечивать прямое управление током, протекающим через него. Это позволяет исключить потери, возникающие на балластном (токоограничительном) резисторе.

Одним из оптимальных вариантов питания различных светодиодов от автономных источников тока небольшого напряжения 1-5 вольт является использование специализированной микросхемы ZXSC300 фирмы ZETEX. ZXSC300 это импульсный (индуктивный) повышающий преобразователь DC-DC c частотно-импульсной модуляцией.

Рассмотрим принцип работы ZXSC300.

На рисунке Рис.2 показана одна из типовых схем питания белого светодиода импульсным током с помощью ZXSC300. Импульсный режим питания светодиода позволяет максимально эффективно использовать энергию, имеющуюся в батарейке или аккумуляторе.

Кроме самой микросхемы ZXSC300 преобразователь содержит: элемент питания 1,5 В, накопительный дроссель L1, силовой ключ – транзистор VT1, датчик тока – R1.

Работает преобразователь традиционным для него образом. В течение некоторого времени за счет импульса, поступающего с генератора G (через драйвер), транзистор VT1 открыт и ток через дроссель L1 нарастает по линейному закону. Процесс длиться до момента, когда на датчике тока - низкоомном резисторе R1 падение напряжение достигнет величины 19 мВ. Этого напряжения достаточно для переключения компаратора (на второй вход которого подано небольшое образцовое напряжение с делителя). Выходное напряжение с компаратора поступает на генератор, в результате чего силовой ключ VT1 закрывается и энергия, накопленная в дросселе L1, поступает в светодиод VD1. Далее процесс повторяется. Таким образом, из первичного источника питания в светодиод поступает фиксированные порции энергии, которые он преобразует в световую.

Управление энергией происходит с помощью частотно-импульсной модуляции ЧИМ (PFM Pulse Frequency Modulation). Принцип ЧИМ заключается в том, что изменяется частота, а постоянным остаётся длительность импульса или паузы, соответственно, открытого (On-Time) и закрытого (Off-Time) состояния ключа. В нашем случаи неизменным остаётся время Off-Time, т. е. длительность импульса, при котором внешний транзистор VT1 находится в закрытом состоянии. Для контроллера ZXSC300 Toff составляет 1,7 мкс.

Это время достаточно для передачи накопленной энергии из дросселя в светодиод. Длительность импульса Ton, в течение которого открыт VT1, определяется величиной токоизмерительного резистора R1, входным напряжением, и разницей между входным и выходным напряжением, а энергия, которая накапливается в дросселе L1, будет зависеть от его величины. Оптимальным считается, когда полный период Т равен 5мкс (Toff +Ton). Соответственна рабочая частота F=1/5мкс =200 кГц.

При указанных на схеме Рис.2 номиналах элементов осциллограмма импульсов напряжения на светодиоде имеет вид

Рис.3 вид импульсов напряжения на светодиоде. (сетка 1В/дел, 1мкс/дел)

Немного подробнее об используемый деталях.

Транзистор VT1 - FMMT617, n-р-n транзистор с гарантированным напряжением насыщения коллектор-эмиттер не более 100 мВ при токе коллектора 1 А. Способен выдерживать импульсный ток коллектора до 12 А (постоянный 3 А), напряжение коллектор-эмиттер 18 В, коэффициент передачи тока 150...240. Динамические характеристики транзистора: время включения/ выключения 120/160 нс, f =120 МГц, выходная емкость 30 пф.

FMMT617 является лучшим коммутационным устройством, которое можно использовать совместно с ZXSC300. Он позволяет получить высокий КПД преобразования при входном напряжении меньше одного вольта.

Накопительный дроссель L1.

В качестве накопительного дросселя можно использовать как промышленные SMD Power Inductor, так и самодельные. Дроссель L1 должен выдерживать максимальный ток силового ключа VT1 без насыщения магнитопровода. Активное сопротивление обмотки дросселя не должно превышать 0,1 Ом иначе КПД преобразователя заметно снизиться. В качестве сердечника для самостоятельной намотки хорошо подходят кольцевые магнитопроводы (К10x4x5) от дросселей фильтров питания использующиеся в старых компьютерных материнских платах. На сегодняшний день б/у компьютерное «железо» можно приобрести по бросовым ценам на любом радиорынке. А «железо» - это неисчерпаемый источник разнообразный деталей для радиолюбителей. При самостоятельной намотки для контроля понадобится измеритель индуктивности.

Токоизмерительный резистор R1. Низкоомный резистор R1 47мОм получен параллельным соединением двух SMD резисторов типоразмера1206 по 0,1 Ом.

Светодиод VD1.

Светодиод VD1 белого свечения с номинальным рабочим током 150 мА. В авторской конструкции используется два четырехкристальных светодиода соединенные параллельно. Номинальный ток одного из них составляет 100 мА, другого 60 мА. Рабочий ток светодиода определен путем пропускания через него, стабилизированного постоянного тока и контроля температуры катодного (минусового) вывода, который является радиатором и отводит тепло от кристалла.

При номинальном рабочем токе температура теплоотводящего вывода не должна превышатьградусов. Вместо одного светодиода VD1 также можно использовать восемь параллельно соединенных стандартный 5 мм светодиодов с током 20 мА.

Внешний вид устройства

Рис. 4a.

Рис. 4b.

Показана на Рис. 5

Рис. 5 (размер 14 на 17 мм).

При разработке плат для подобных устройств необходимо стремиться к минимальным значениям емкости и индуктивности проводника соединяющий К VT1 с накопительным дросселем и светодиодом, а также к минимальным индуктивности и активному сопротивлению входных и выходных цепей и общего провода. Сопротивление контактов и проводов через которые поступает напряжение питания должно быть тоже минимально.

На следующих схемах Рис. 6 и Рис. 7 показан способ питания мощных светодиодов типа Luxeon с номинальным рабочим током 350 мА

Рис. 6 Способ питания мощных светодиодов типа Luxeon

Рис. 7 Способ питания мощных светодиодов типа Luxeon - ZXSC300 запитана от выходного напряжения.

В отличие от рассмотренной ранее схемы здесь питание светодиода происходит не импульсным, а постоянным током . Это позволяет легко контролировать рабочий ток светодиода и КПД всего устройства. Особенность преобразователя на Рис. 7 заключается в том, что ZXSC300 запитана от выходного напряжения. Это позволяет ZXSC300 работать (после запуска) при снижении входного напряжения вплоть до 0,5 В. Диод VD1 - Шотки рассчитанный на ток 2А. Конденсаторы С1 и С3 - керамические SMD, С2 и С3 - танталовые SMD.Количество светодиодов последовательно соединенных.

Сопротивление токоизмерительного резистора, мОм.

Индуктивность накопительного дросселя, мкГн.

На сегодняшний день стали доступны в использовании мощные 3 – 5 Вт светодиоды различных производителей (как именитых так и не очень).

И в этом случаи применение ZXSC300 позволяет легко решить задачу эффективного питание светодиодов с рабочим током 1 А и более.

В качестве силового ключа в данной схеме удобно использовать подходящий по мощности n-канальный (работающий от 3 В) Power MOSFET, можно также использовать сборку серии FETKY MOSFET (с диодом Шотки в одном корпусе SO-8).

С помощью ZXSC300 и нескольких светодиодов можно легко вдохнуть вторую жизнь в старый фонарь. Модернизации был подвергнут аккумуляторный фонарь ФАР-3.

Рис.11

Светодиоды использовались 4-х кристальные с номинальным током 100 мА - 6 шт. Соединены последовательно по 3. Для управления световым потоком применены два преобразователя на ZXSC300, имеющих независимое вкл/выкл. Каждый преобразователь работает на свою тройку светодиод.

Рис.12

Платы преобразователей выполнены на двухстороннем стеклотекстолите, вторая сторона соединена с минусом питания.

Рис.13

Рис.14

В фонаре ФАР-3 в качестве элементов питания используются три герметичных аккумулятора НКГК-11Д (KCSL 11). Номинальное напряжение этой батареи 3,6 В. Конечное напряжение разряженной батареи составляет 3 В (1 В на элемент). Дальнейший разряд нежелателен т. к. это приводит к сокращению срока службы батареи. А дальнейший разряд возможен - преобразователи на ZXSC300 работают, как мы помним, вплоть до 0,9 В.

Поэтому для контроля напряжения на батарее было спроектировано устройство, схема которого показана на Рис. 15.

Рис.15

В данном устройстве используется недорогая доступная элементная база. DA1 - LM393 всем известный сдвоенный компаратор. Опорное напряжения 2,5 В получаем с помощью TL431 (аналог КР142ЕН19). Напряжение срабатывания компаратора DA1.1 около 3 В задаётся делителем R2 - R3 (для точного срабатывания возможно потребуется подбор этих элементов). Когда напряжение на батареи GB1 снижается до 3 В загорается красный светодиод HL1, если напряжение больше 3 В то HL1 гаснет и загорается зеленый светодиод HL2. Резистор R4 определяет гистерезис компаратора.

Печатная плата устройства контроля показана на Рис. 16 (размер 34 на 20 мм).

Если у вас возникли трудности с приобретением микросхемы ZXSC300, транзистора FMMT617 или низкоомных SMD резисторов 0,1 Ом, можно обращаться к автору на e-mail david_ukr (аt) *****

Вы можете приобрести следующие компоненты (доставка почтой)

Элементы

Количество

Цена, $

Цена, грн

Микросхема ZXSC 300 + транзистор FMMT 617

Резистор 0,1 Ом SMD типоразмер 0805

Печатная плата Рис. 8

    Скачать статью в формате PDF - 1,95Мб Скачать статью в формате DjVU (Что это такоеКб

Делаем фонарик на светодиодах своими руками

Подходят различной мощности. Световая эффективность устройства не должна превышать 80 лм. Также внимание следует обращать на драйвер. Как правило, он устанавливается с выходным конденсатором. У некоторых моделей имеется усилитель. В среднем потребление тока у них равняется 3 А.

Если рассматривать чувствительные модификации, то у них установлена система защиты от перепадов напряжения. Для того чтобы более подробно разобраться в вопросе, необходимо рассмотреть конкретные модели.

Схемы с емкостными конденсаторами

Схемы фонариков на светодиодах с емкостными конденсаторами включают волновые фильтры. В данном случае триггеры используются на полупроводниковой основе. Как правило, параметр выходного напряжения у них не превышает 20 В. Для снижения чувствительности используются преобразователи. Драйверы у моделей устанавливаются с различной пропускной способностью. Если рассматривать светодиод на 30 В, то у него имеется трансивер.

Использование демпфирующих конденсаторов

Схема светодиода с демпфирующим конденсатором включает в себя контактные фильтры. Всего у моделей имеется два преобразователя. Драйвер к светодиоду подсоединяется через обмотку. У некоторых модификаций предусмотрен компактный трансивер. Чаще всего он используется с усилителем.

Характеристики LED с маркировкой 530

Это универсальные и для фонариков. Характеристики устройств указывают на высокий коэффициент проводимости. Производятся светодиоды на 20 и 25 В. Если рассматривать первый вариант, то световая эффективность устройства в среднем равняется 60 лм. Коэффициент цветопередачи в данном случае зависит от проводимости трансивера. У многих моделей усилитель используется без преобразователя.

Показатель потребления тока у светодиодов не превышает 2,5 А. Время включения моделей данного типа составляет около 6 мс. Если рассматривать светодиоды на 25 В, то у них используется только импульсный трансивер. У многих моделей предусмотрен один усилитель. Драйвер подсоединяется с помощью преобразователя. Параметр светового потока лежит в районе 65 лм. Время включения светодиодов данного типа равняется 7 мс.

LED 640 (светодиоды для фонариков): характеристики, фото

Схема светодиода указанной серии включает в себя преобразователь фазового типа. Для повышения чувствительности используются фильтры. Усилители чаще всего применяются на магнитной основе. Параметр световой эффективности в устройствах равняется 65 лм. Также важно отметить, что показатель потребления тока не превышает 4,2 А. Отклонения частоты составляет в среднем 4 Гц.

Срок службы светодиодов данного типа составляет три года. К недостаткам устройств можно отнести малую проводимость тока у драйверов. Показатель яркости у них крайне низкий. Световая отдача, как правило, не превышает 5 %. Эти светодиоды для фонариков 6 вольт подходят хорошо.

Использование светодиодов LED 765

Для устройства на 12 В используются указанные светодиоды для фонариков. Характеристики 2014 года указывают на повышенный уровень потребления тока. этой модификации равняется 45 лм. Также важно отметить, что модель подходит для импульсных усилителей. Драйвер в устройстве используется на 6,5 мк. Фазовые помехи указанным светодиодам не страшны.

Световая эффективность в среднем равняется 70 лм. Срок службы устройства не превышает четыре года. Коэффициент цветопередачи равняется 80 %. Для фонариков с регуляторами модель подходит отлично. В данном случае подключение устройств осуществляется через контактный переходник.

Схема LED 840

Это компактные и универсальные светодиоды для фонариков. Характеристики модели в первую очередь говорит о высоком показателе рассеивания. Коэффициент пульсации у нее максимум достигает 80 %. Время включения устройства составляет 5 мс. Если верить специалистам, то для фонариков на 12 В модель подходит замечательно. Усилитель в устройстве установлен поглощающего типа.

Всего у модели имеется два драйвера. Триггер у светодиода используется с переходником. Для решения проблем с тепловыми потерями стандартно применяется конденсатор. Световая эффективность представленной модели равняется 67 лм. Показатель проводимости не превышает 10 мк. В данном случае потребление тока составляет 0,3. Минимальная допустимая температура светодиода только -10 гарусов. Система защиты от перегрева у модели отсутствует.

Характеристики LED 827

Моделям с подходят указанные светодиоды для фонариков. Характеристики устройства говорят о наличие качественных проводных трансиверов. Усилители у модели установлены открытого типа. Всего в устройстве используется два конденсатора. С минимизацией тепловых потерь они справляются отлично. Минимальная допустимая температура светодиода равняется -15 градусов.

Для фонариков на 15 В они не подходят. Система защиты в устройстве используется с фильтрами. Драйвер у модели предусмотрен на 4,5 мк. Потребление тока равняется не более 4 А. Время включения светодиода в среднем составляет 6 мс. Коэффициент пульсации модели - 85 %. Световая эффективность, как правило, не превышает 50 лм.

Светодиоды LED 830

На устройства в 10 В отлично подходят данные светодиоды для фонариков. Характеристики у них довольно хорошие. Время включения - 5 мс, световая эффективность 65 лм, а потребление тока равняется 3,3 А. Преобразователь у модели используется фазового типа. Если верить специалистам, то для фонариков на 15 В модель не подходит.

Трансивер в указанном светодиоде отсутствует. Непосредственно драйвер установлен с проводимостью 4,5 мк. Проблемы с выпрямлением тока решаются благодаря конденсаторам. Коэффициент пульсации у модели максимум достигает 90 %. Срок службы представленного устройства - три года. Минимальная допустимая температура светодиода не превышает -20 градусов.

Характеристики LED серии ЛБ

Для фонариков на 15 В подходит указанный светодиод. Характеристики модели говорят о повышенном коэффициенте цветопередачи. Выходное напряжение модели - 15 В. Фильтр в устройства используется волнового типа. Драйвер в данном случае подсоединяется через проводник. Трансивер у светодиода используется с переходником. Конденсатор установлен открытого типа. Всего у модели есть два триггера. В данном случае потребление энергии составляет 2,5 А.

Световой поток устройства максимум достигает 65 лм. Коэффициент пульсации у модели незначительный. Также к недостаткам можно приписать малый уровень минимально допустимой температуры. Китайский фонарик на светодиодах включается за 4 мс. Проблемы с выпрямление тока у модели возникают редко. Для фонариков на 10 В указанная модель не подходит. Система защиты от перегрева у светодиода отсутствует. Отклонение частоты у модели равняется 5 Гц. Эти светодиоды для фонариков Cree подходят замечательно.

дневного света

Указанные светодиоды для фонариков производятся с качественными усилителями импульсного типа. Всего у модели установлено два конденсатора. Трансивер стандартно используется проводного типа. Также важно отметить, что отклонение частоты максимум составляет 4 Гц. Потребление тока у светодиода не превышает 3 А.. Световой поток устройства равняется 70 лм. Световая отдача у модели незначительная.

Если верить специалистам, то для фонариков на 12 В модель подходит замечательно. Непосредственно подключение драйвера осуществляется через переходник. В среднем время включения равняется 6 мс. Срок службы представленной модели 5 лет. Минимальная допустимая температура светодиода равняется -15 градусам.

серии ТБ (тёпло-белого света)

Это простые и не дорогие светодиоды для фонариков. Характеристика устройства говорит о том, что коэффициент цветопередачи у модели невысокий. Также важно отметить, что выходное напряжение равняется 8 В. Срок службы светодиода составляет три года. Трансивер у модификации используется высокой чувствительности. Всего у модели предусмотрено два конденсатора. Если верить экспертам, то для фонариков на 10 В устройство не подходит. Показатель потребления тока у модели равняется 2 А. Световой потока светодиода максимум достигает 65 лм.

Проблемы с отрицательной модуляцией встречаются редко. К недостаткам можно отнести только малый параметр проводимости. Фильтры в устройстве используются только открытого типа. Максимальное отклонение частоты у светодиода достигает 5 Гц. Для снижения чувствительности на конденсаторе применится триггер. Коэффициент пульсации у модели незначительный. Для установки светодиода необходим проводной переходник.

Особенности моделей LED серии ЛХБ (холодно-белого света)

Указанные светодиоды характеристики имеют хорошие. В первую очередь важно отметить, что коэффициент цветопередачи равняется 80%. В данном случае срок службы составляет три года. Непосредственно выходное напряжение составляет 12 В. Время включения равняется 5 мс. В данном случае усилитель используется с переходником. Если верить специалистам, то проблемы с тепловыми потерями встречаются редко. Конденсаторы у модели уставлены проходного типа.

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.


Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.


1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.


Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования (электронного стабилизирующего блока).

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке . На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.


Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиода Материал Прямое напряжение при 20 мА
Типовое значение (В) Диапазон (В)
ИК GaAs, GaAlAs 1,2 1,1-1,6
Красный GaAsP, GaP, AlInGaP 2,0 1,5-2,6
Оранжевый GaAsP, GaP, AlGaInP 2,0 1,7-2,8
Желтый GaAsP, AlInGaP, GaP 2,0 1,7-2,5
Зеленый GaP, InGaN 2,2 1,7-4,0
Голубой ZnSe, InGaN 3,6 3,2-4,5
Белый Синий/УФ диод с люминофором 3,6 2,7-4,3

Сопротивление световых диодов

Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.


Светоотдача и угол свечения

Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 120 0 . По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.

Мощность светодиодных ламп

Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I × U , где I – сила тока, а U – напряжение светодиода.

Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой необходим для того или иного количества элементов.

Цветовая температура

Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.


Размер чипа LED элемента

Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.

Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.

Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.


Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.


Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

Параметр Китайский 2835 2835 0,2W 2835 0,5W 2835 1W
Сила светового потока, Лм 8 20 50 100
Потребляемая мощность, Вт 0,09 0,2 0,5 1
Температура, в градусах С +60 +80 +80 +110
Ток потребления, мА 25 60 150 300
Напряжение, В 3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 120 0 .


Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.


Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.


Предлагаем Вам небольшое видео на эту тему:

Проверка светодиода мультиметром – как ее выполнить

Самым простым и доступным способом является «прозвонка». На мультиметрах есть отдельное положение переключателя, специально для диодов. Переключив прибор в нужную позицию, прикасаемся щупами к ножкам светодиода. Если на дисплее высветилась цифра «1», следует поменять полярность. В этом положении зуммер мультиметра должен издавать звуковой сигнал, а светодиод светиться. Если подобного не произошло, значит, он вышел из строя. Если же световой диод исправен, но при впайке его в схему не работает, этому может быть две причины – неправильное его расположение или выход из строя резистора (у современных SMD-компонентов он уже встроен, что будет ясно в процессе «прозвонки»).


Цветовая маркировка световых диодов

Общепринятой мировой маркировки подобных изделий не существует, каждый производитель обозначает цвет так, как ему это удобно. В России применяют цветовую маркировку светодиодов, но ею мало кто пользуется, потому, как список элементов с буквенными обозначениями довольно внушителен и запоминать его вряд ли кому-то захочется. Наиболее распространенно буквенное обозначение, которое многие и считают общепринятым. Но такая маркировка чаще встречается не на мощных элементах, а на светодиодных лентах.


Расшифровка кода маркировки светодиодной ленты

Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:

Позиция в коде Назначение Обозначения Расшифровка обозначения
1 Источник света LED Светодиод
2 Цвет свечения R Красный
G Зеленый
B Синий
RGB Любой
CW Белый
3 Способ монтажа SMD Surface Mounted Device (Устройство, монтируемое на поверхность)
4 Размер чипа 3028 3,0 х 2,8 мм
3528 3,5 х 2,8 мм
2835 2,8 х 3,5 мм
5050 5,0 х 5,0 мм
5 Количество светодиодов на метр длины 30
60
120
6 Степень защиты: IP International Protection
7 От проникновения твердых предметов 0-6 Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)»
8 От проникновения жидкости 0-6

Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.


Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО "АСП Северо-Запад"

Спросить у специалиста

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”


Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.


Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток. ДХО должны быть заметны при свете солнца.


Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды. В результате получается мигающая реклама, которая явно привлечет внимание.

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.


В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.


Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Схемы подключения светодиодов – как все правильно выполнить

Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).


Как рассчитать сопротивление светодиода

Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.

Сделать это можно по формуле:

R = (VS – VL ) / I , где

  • VS – напряжение питания;
  • VL номинальное напряжение для светодиода;
  • I – ток светодиода (обычно это 0.02 А, что равно 20 мА).

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.

Параллельное и последовательное соединение: как они выполняются

По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.


Подключение световых диодов на 12 В как самый оптимальный вариант

Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.


В заключение

Популярность, которую набирают световые диоды, не может не радовать. Ведь это заставляет прогресс двигаться вперед. И кто знает, быть может, уже в ближайшее время появятся новые светодиоды, которые будут на порядок выше по характеристикам, чем существующие сейчас.

Надеемся, наша статья была полезна уважаемому читателю. При возникновении вопросов по теме просим задавать их в обсуждениях. Наша команда всегда готова на них ответить. Пишите, делитесь опытом, ведь он может кому-то помочь.

Видео: как правильно подключить светодиод

Разобраться, от каких параметров зависит работа фонарика, одинаково важно тем, кто хочет подобрать себе готовую модель, и желающим спроектировать устройство своими руками (будь то брелок-фонарик со светодиодом, карманный, налобный или походный вариант). Ремонт фонариков преимущественно зависит от их устройства, а замена некоторых элементов требует особых навыков. Яркий – вовсе не единственное определение для качественного устройства.

Первым делом следует обозначить назначение фонарика. Вряд ли возможно выделить универсальное устройство, одинаково эффективное в любых условиях. В конце концов, маленький карманный фонарик никогда не сравнится с мощным стационарным оборудованием, а самодельные приборы далеко не всегда превосходят уже готовые (даже китайского производства), и дело не только в том, как был подобран светодиод.

Габариты

Определиться с размерами фонаря необходимо в 2-х случаях: чтобы иметь возможность носить его с собой (в кармане, сумке и т.д.), и чтобы правильно рассчитать корпус при собственноручном составлении схемы.

Габариты также нужно знать при подборе аксессуаров. Налобный фонарь носят на специальной ленте, а походный – на клипсе или в матерчатом чехле (на поясе).

Параметры светового потока

Зачастую, требуется именно самый яркий фонарь, но не всегда большое количество люменов полностью определяют этот показатель. Не менее важная роль отводится углу рассеивания освещения. С освещением небольшой области может справиться и простой брелок-фонарик со светодиодом или любой карманный вариант. Чем уже луч – тем дальше может светить прибор, например, налобный фонарик для походов.

Важно: Линза может в корне изменить характеристики устройства. Схема работы фокусируемых фонарей довольно проста: положение линзы регулирует ширину и наклон луча по мере своего приближения/отдаления от светодиода.
Подбор самого светодиода

Именно источник света определяет большинство показателей фонарика (насколько он яркий). На работу устройства влияет не только сам светодиод, но также величина его рабочего тока. Силу тока нужно учитывать, чтобы ненароком не спалить девайс, ведь ремонт фонаря не всегда к месту. Светодиод и их цепочки могут по-разному группироваться, чтобы увеличить дальность или площадь охвата (самый большой обычно располагается ближе к центру).

Работа в автономном режиме

Длительность работы – весьма относительная величина. Она обусловлена не только выбором аккумулятора, но и режимом фонарика, за который отвечает светодиод. Как для самодельных устройств, так и для готовых, можно вмонтировать таймер для экономии энергии. Автономный режим может исчисляться часами (карманный и налобный фонарики) и даже сутками (аварийные и поисковые), на этот промежуток влияют преимущественно основные характеристики.

Виды элементов питания

Аккумуляторы различаются в зависимости от принципа получения энергии, среди наиболее популярных типов можно выделить такие:

  • литиевые (Li-Ion);
  • никель-металлогидридные (NiMH);
  • никель-кадмиевый (NiCd);
  • свинцово-кислотные;
  • литий-полимерные (Li‑pol);
  • никель-цинковые (NiZn).

Маленький фонарик (карманный или налобный) может работать и на обычных пальчиковых батарейках, в других случаях тип аккумулятора лучше подбирать исходя из общих требований, чтобы ремонт или замена батареи не стала нерешаемой задачей.

Режимы работы

Чем проще прибор – тем меньше режимов у него в арсенале. Самый простой яркий брелок-фонарик со светодиодом, карманный и налобный фонари, как правило, имеют не больше одного. Чем сложнее система – тем больше вероятность отказа одной из составляющих, т.е. тем чаще им требуется ремонт.

Классификация режимов:

  • яркостные (минимальный-средний-максимальный);
  • сигнальные (стробные);
  • программируемые (настраиваются пользователем вручную).

Подверженность влиянию внешних факторов

Сама схема и светодиод должны быть защищены от ударов, тряски, попадания пыли и грязи. Для более серьезных устройств лучше обеспечить влагостойкость. Это бывает достаточно сложно не только при самостоятельной сборке, но и после приобретения готовых моделей. Водостойкость лучше проверять заранее, особенно на фонариках китайского производства, чтобы иметь возможность вовремя осуществить ремонт.

Расположение креплений

Фонарик должен быть удобными в эксплуатации. Для этого нужно заранее продумать, как будет составлена схема - расположение кнопок, ответственных за то, как работает светодиод, вспомогательные линзы и рассеиватели. Важно иметь возможность отрегулировать крепление (налобный или вело-фонарь), плотность зажима и др.

Стабилизация тока

Режим работы фонаря на светодиодах напрямую зависит от подаваемого тока, остальные характеристики при этом могут быть схожими. Устройства стабилизированного считаются более яркими и стабильными, но при разрядке быстро гаснут. Нестабилизированный же фонарь менее яркий, зато лампы гаснут постепенно, со временем сбавляя свою яркость до 0.

Разобравшись в параметрах устройства, становится намного проще не только подобрать интересующий вид фонарика (карманный, налобный, навесной, брелок-фонарик со светодиодом), но и определиться с требуемыми элементами, если есть собственная схема и подобран соответствующий светодиод, а также осуществить частичный ремонт устройства.

Отправим материал вам на e-mail

Основные характеристики светодиодов SMD 5730

Современные изделия с геометрическими параметрами 5,7×3 мм. Благодаря своим стабильным характеристикам светодиоды SMD 5730 относятся к категории сверхъярких изделий. Для их изготовления используются новые материалы, благодаря чему они имеют повышенную мощность и высокоэффективный световой поток. SMD 5730 допускают эксплуатацию работать в условиях повышенной влажности. Они не боятся вибрации и температурных колебаний. Отличаются продолжительным сроком службы. Имеют угол рассеивания 120 градусов. После 3000 часов работы степень не превышает 1%.

Производители предлагают приборы двух видов: с мощностью 0,5 и 1 Вт. Первые маркируются SMD 5730-0,5, вторые – SMD 5730-1. Прибор может функционировать на импульсном токе. Для SMD 5730-0,5 номинальный ток равен 0,15 А, а при переходе на импульсный режим работы может достигать 0,18 А. Способен сформировать световой поток до 45 Лм.

Для SMD 5730-1 номинальный ток равен 0,35А, импульсный может достигать 0,8А при эффективности светоотдачи 110 Лм. Благодаря использованию в процессе производства термостойкого полимер, корпус прибора не боится воздействия достаточно высоких температур (до 250°С).

Cree: актуальные характеристики

Продукция американского производителя представлена в широком ассортименте. Серия Xlamp включает однокристальные и многокристальные изделия. Для первых характерно распределение излучения по краям прибора. Такое инновационное решение позволило наладить выпуск светильников с большим углом свечения при минимальном количестве кристаллов.

Серия XQ-E High Intensity является новейшей разработкой компании. Изделия обладают углом свечения 100-145 градусов. При сравнительно небольших геометрических параметрах 1,6 на 1,6 мм такие светодиоды имеют мощность 3 В при световом потоке 330 Лм. Характеристики светодиодов Cree на базе одного кристалла позволяют обеспечить качественную цветопередачу CRE 70-90.

Многокристальные LED-приборы имеют новейший тип питания 6-72 В. Их принято делить три группы в зависимости от мощности. Изделия до 4 Вт имеют 6 кристаллов и выпускаются в корпусах типа MX и ML. Характеристики светодиода XHP35 соответствуют мощность 13 Вт. Имеют угол рассеивания 120 градусов. Могут быть теплого или холодного белого цвета.

Проверка светодиода с помощью мультиметра

Иногда возникает необходимость в проверке работоспособности светодиода. Сделать это можно с помощью мультиметра. Тестирование выполняется в следующей последовательности:

Фото Описание работ
Готовим необходимое оборудование. Подойдет обычная китайская модель мультиметра.
Выставляем режим сопротивления, соответствующие 200 Ом.
Прикасаемся контактами к проверяемому элементу. Если светодиод является рабочим, то он начнет светиться.
Внимание! Если контакты перепутать местами, характерного свечения наблюдаться не будет.

Маркировка светодиодов по цвету

Чтобы приобрести светодиод нужного цвета, предлагаем ознакомиться с условным обозначением цветности, входящей в состав маркировки. У CREE оно располагается после обозначения серии светодиодов, и может быть:

  • WHT , если свечение белого цвета;
  • HEW , если высокоэффективного (high efficiency) белого;
  • BWT для белого второго поколения;
  • BLU , если свечение синего света;
  • GRN для зеленого;
  • ROY для королевского (яркого) синего;
  • RED у красного.

Другие производители часто используют другое условное обозначение. Так KING BRIGHT позволяет подобрать модель с излучением не только определенного цвета, но и оттенка. Присутствующее в маркировке обозначение будет соответствовать:

  • Красному (I, SR);
  • Оранжевому (N, SE);
  • Желтому (Y);
  • Синему (PB);
  • Зеленому (G, SG);
  • Белому (PW, MW).
Совет! Ознакомиться с условными обозначениями конкретного производителя, чтобы сделать правильный выбор.

Расшифровка кода маркировки светодиодной ленты

Для изготовления светодиодной ленты используется диэлектрик, имеющий толщину 0,2 мм. На него наносятся токопроводящие дорожки, имеющие контактные площадки под чипы, предназначенные для монтажа SMD-компонентов. Лента включает отдельные модули, имеющие длину 2,5-10 см и рассчитанные на напряжение 12 либо 24 вольта. В состав модуля может входить 3-22 светодиода и несколько резисторов. Длина готовых изделий в среднем составляет 5 метров при ширине 8-40 см.

На бобину либо упаковку наносятся маркировку, в которой содержится вся актуальная информация о светодиодной ленте. Расшифровка маркировки можно увидеть на следующем рисунке:

Статья