Тиристорный выпрямитель схема. Управляемый выпрямитель на тиристорах

Тиристорные регулируемые выпрямители

Простейшее мощное зарядное устройство можно собрать с применением силовых тиристоров. В подобных схемах они выполняют функцию выпрямителей, к которым подведено фазовое регулирование.

Как известно, тиристор открывается при протекании тока через управляющий электрод. Величины напряжения и тока можно найти в справочниках и даташитах. Силовым тиристорам для открытия требуется импульс, что делает управление экономичным, но усложняет схему. Закрывается тиристор, как и симистор, сам, на нуле синусоиды.

Так как мы рассматриваем простейшие схемы, то рассмотрим вариант обычного фазового регулирования, который подойдёт для проверки. Первый вариант - с трансформатором, имеющим две вторичных силовых обмотки (или одну со средней точкой). В этом случае требуется всего два выпрямительных элемента, роль которых и выполняют тиристоры. Силовая часть отмечена на схеме красным цветом.


Так как мощные зарядные устройства требуются, как правило, для высоковольтных аккумуляторных батарей, то получать низкое напряжение управления с силовой вторичной обмотки не выгодно по причине рассеивания большой мощности на гасящем резисторе, который также выполняет функции регулировочного. Поэтому для питания цепей управления, помеченных на схеме зелёным цветом, имеется дополнительная обмотка, которую легко можно намотать монтажным проводом на любой части трансформатора. Количество витков следует подобрать таким, чтобы напряжение соответствовало паспортному на конкретный тиристор.

Фазовое регулирование работает очень просто. Через регулировочный резистор R1 заряжаются конденсаторы С1 и C2. Время их заряда зависит от ёмкости и сопротивления резистора. Это время и определяет момент открытия тиристора. Чем меньше сопротивление, тем быстрее зарядится конденсатор и тем раньше на данном полупериоде откроется тиристор, и тем больший ток получит нагрузка. Для тиристоров Т161 понадобились конденсаторы на 100 мкФ и резистор на 33 Ом. Обрати внимание, что ток диодов моста DB1, мощность резистора R1, ток диодов D1 и D2 должны быть соответствующими токам управления тиристоров.

Схема мощного регулируемого зарядного устройства для трансформатора с одной силовой обмоткой будет отличаться лишь тем, что здесь требуется полноценный мост из четырёх выпрямительных элементов. В качестве двух из них используем силовые диоды VD1 и VD2. Управляющая часть схемы остаётся прежней.


В случае же, если напряжение силовой обмотки невысокое, то напряжение для управления тиристорами регулятора можно брать с неё же.

Как уже было сказано, эти схемы годятся лишь для проверки работы тиристорных регуляторов; такое управление допустимо лишь на сравнительно малых токах. Для управления мощными силовыми тиристорами, работающими на больших токах, управление следует делать импульсным. Возможная схема такого управления представлена ниже:

Однопереходный транзистор здесь может быть заменён аналогом из двух биполярных. Он открывается, когда напряжение на конденсаторе C1 достигнет определённого значения, а это время определяется, как и в предыдущей схеме, ёмкостью и сопротивлением. Для того, чтобы импульс управления получился токовым, добавлен транзистор VT2. Трансформатор должен иметь соотношение обмоток 1:1 и быть импульсным, желательно - на пермаллое. Фазировка обмоток - такая, какая была на оригинальной схеме из интернета, и, возможно, здесь есть ошибка. Для управления двумя тиристорами следует добавить на этот трансформатор ещё одну обмотку.

Широкое применение тиристоров при регулировании напря­жения объясняется следующими их преимуществами по сравне­нию с рассмотренными ранее схемами:

Большая экономичность вследствие малого падения напряжения в проводящем состоянии (около 2 В);

Высокая скорость регулирования, позволяющая обеспечить стабилизацию выпрямленного напряжения и осуществить защиту выпрямителя от перегрузок и коротких замыканий;

Меньшая необходимая мощность управления;

Меньшие габаритные размеры и масса.

Управляемые вентили - тиристоры - могут находиться в двух крайних состояниях (рис. 122, а): открытом (участок ВС) и закры­том (участок 0А). Момент включения тиристора можно регулиро­вать, подавая управляющий импульс тока на р-п -переход, приле­гающий к катоду (рис. 122, б). Ток нагрузки, проходя через от крытый тиристор, смещает все три

Рис. 122. Вольтамперная характеристика тиристора (а), его структура, (б) и условное графическое обозначение (в): Iу - ток управления; А - анод; К - катод: УЭ - управляющий электрод/

Рис. 123. Структурная схема управляемого выпрямителя (и), принципи­альная схема простейшего РВБ (б) и диаграммы напряжений на его входе и выходе (в)

eго р-п -перехода в прямом направлении, и управляющий электрод (УЭ) теряет влияние на процессы, происходящие в тиристоре. При падении прямого тока до нуля после рассасывания заряда неосновных носителей в базо­вых областях тиристор запирается и его управляющие свойства восстанавливаются. Условное графическое обозначение тиристо­ра приведено на рис. 122, в.

На рис. 123,а приведена структурная схема управляемого вы­прямителя на управляемых вентилях.

Принципиальным отличием схемы управляемого выпрямите­ля (УВ) от неуправляемого является наличие в ней регулируемого вентильного блока (РВБ) и устройства управления (УУ), регули­рующего напряжение сети. Простейшая схема РВБ на одном ти­ристоре VS приведена на рис. 123, б. Следует напомнить, что для включения тиристора необходимо выполнение следующих усло­вий: напряжение на его аноде должно быть положительным, но меньшеU ПР.ВКЛ. , а к управляющему электроду (УЭ) должно быть приложено положительное напряжение, соответствующее отпи­рающему току. Первое условие выполняется для положительных полуволн напряжения U 2 , а для выполнения второго условия к управляющему электроду тиристора подводится отпирающий (уп­равляющий) положительный импульс напряжения U y .

В момент прихода управляющего импульса, соответствующего углу отпирания а, тиристор теряет управляющие свойства, поэто­му, когда напряжение на аноде станет равным нулю, произойдет его выключение. Форма напряжения на резистивной нагрузке R H без фильтра показана на рис. 123, в. Момент включения тиристора

Можно регулировать в пределах положительной полуволны вы­ходного напряжения U 2 трансформатора, т.е. в диапазоне 0 ≤α≤π. При этом если тиристор включается при α = 0, то среднее выпрямленное напряжение нагрузки U Н.С.В. =0. Такой способ уп­равления тиристором называется фазоимпульсным.

В рассмотренной схеме управляемого выпрямителя пульсации напряжения нагрузки довольно большие, поэтому для их умень­шения необходимо включить сглаживающий фильтр. Следует от­метить, что в тиристорных управляемых выпрямителях использу­ют фильтры, начинающиеся с дросселя, так как при подключе­нии сразу емкостного фильтра заряд конденсатора через открыв­шийся тиристор может сопровождаться большим током, который может вывести тиристор из строя.

Рассмотрим работу схемы двухфазного управляемого выпря­мителя (рис.124, а) с индуктивно-емкостным фильтром. В этой схеме возможны два режима работы: без блокировочного диода (VD) и с блокировочным диодом. Различие этих режимов заклю­чается в способе выключения тиристоров.

Рис. 124. Схема двухфазного управляемого выпрямителя ), временные диаграммы напряжений на входе и выходе (б) и регулировочные кри­вые (в): 1 - без диода VD ; 2 - при наличии диода VD.

Работа выпрямителя без блокировочного диода происходит следующим образом. С поступлением управляющего импульса тиристор VS1 включается с углом отпирания α. На выход выпря­мителя передается напряжение первой фазы вторичной обмотки U" 2 . При t ≥ п напряжение U" 2 изменяет полярность на отрицатель­ную, но тиристор VS1 не закрывается, так как через него прохо­дит ток дросселя фильтра L ф, и напряжение самоиндукции обес­печивает его открытое состояние.

При t = α + п включается тиристор VS2, который передает на выход напряжение U" 2 второй фазы вторичной обмотки, В этом случае ток дросселя фильтра L ф переключается на вторую фазу, а тиристор VS1 закрывается. Напряжения на выходе выпрямителя U o и нагрузке U H показано на рис. 124, б (заштрихованные обла­сти).

При достаточно большом значении L ф = R H /ωугол включения тиристоров можно регулировать от нуля до π/2, как показано на рис. 124, в (кривая 1при L =∞).

Напряжение нагрузки растет с уменьшением угла α и умень­шается при его увеличении.

При работе выпрямителя с блокировочным диодом VD тири­сторы VS VS 2выключаются, когда напряжение на его аноде становится равным нулю. При этом протекание тока в дросселе фильтра не прерывается из-за включения диода VD.

В результате часть периода от πдо π+ α ток в дросселе (а зна­чит, и в нагрузке) проходит через диод VD, и напряжение на вы­ходе выпрямителя не изменяет полярности, как показано на рис. 124, б.

Угол α отпирания тиристора в схеме с диодом VD можно ре­гулировать от нуля до π, как показано на рис. 124, в (кривая 2 при L = 0).

При одинаковом угле отпирания тиристоров в схеме без бло­кировочного диода напряжение на нагрузке меньше, чем в схеме с блокировочным диодом, так как в течение части периода повто­рения входного напряжения на его выход передается отрицатель­ное напряжение.

Мостовой управляемый выпрямитель. Мостовой выпрямитель можно построить с меньшим (чем четыре) числом тиристоров, так как для обеспечения управления достаточно включить в каж­дую из двух последовательных цепей, состоящих из двух диодов, один диод управляемый, а другой - неуправляемый (рис. 125, а), Применение двух управляемых диодов вместо четырех (см. рис. 124) позволяет упростить схему управления и удешевить стоимость вен­тильной группы.

Рассмотрим работу схемы мостового выпрямителя, в которой одновременно работают тиристор VS1 и вентиль VD2 или тирис­тор VS2 и вентиль VD 1. Временные диаграммы напряжений и то-

Рис. 125. Мостовая схема управляемого выпрямителя (а) и временные диаграммы напряжений и токов в этой схеме (б)

ков при работе такой схемы на индуктивную нагрузку показаны на рис. 125, 6.

В момент времени t 1на управляющий электрод тиристора VS 1подается импульс управления, открывающий его. В интервале вре­мени от t 1 до t 2ток протекает через тиристор VS 1и вентиль VD,. и напряжение на выходе выпрямителя повторяет входное напря­жение U 2. В момент времени t 3 напряжение U 2изменяет свою полярность, и вентиль VD 2запирается, а вентиль VD 1открывает­ся. Переключения тиристоров в этот момент времени произойти не может, так как на управляющий электрод тиристора VS2 не поступает импульс управления. В итоге в течение периода време­ни от t 2до t 3 открыты тиристор VS 1и вентиль VD2 и через них протекает ток нагрузки I 0 .

Выпрямленное напряжение U 0 в этом интервале времени рав­но нулю (так как выход выпрямителя закорочен), а ток нагрузки поддерживается за счет энергии, запасенной в дросселе L. В мо­мент времени t 3за счет управляющего импульса открывается ти­ристор VS2, а тиристор VS 1 запирается, так как на него при этом подается обратное напряжение.

В интервале времени от t 3до t 4ток проводят и тиристор VS 2, и вентиль VD 1, а напряжение на выходе выпрямителя U 0 анало­гично входному напряжению U 2, но с противоположным зна­ком,

В момент времени U вновь происходит коммутация тока в группе неуправляемых вентилей: запирается вентиль VD1 и открывается вентиль VD2.

В интервале времени от t4 до t5 тиристор VS2 и вентиль VD1 открыты, напряжение на выходе выпрямителя U0 = 0, а ток на­грузки Iо поддерживается неизменным за счет энергии, запасен­ной в дросселе. В интервале времени от t5 до t6 процессы идентич­ны процессам в интервале от t1 до t2.

Как видно из рис. 125, б, временная диаграмма выпрямленного напряжения U0 в этой схеме такая же, как и в схеме выпрямителя с активной нагрузкой.

УСТРОЙСТВА ЗАЩИТЫ ОТ ПЕРЕГРУЗОК

Вторичные источники питания часто снабжают устройствами электронной защиты (УЗ) от перегрузоки короткого замыкания. Такие устройства включают в себя следующие элементы: датчик контролируемой величины (тока, напряжения или температуры); пороговое устройство (ПУ) или схему сравнения; исполнительное устройство (ИУ). Чаще всего требуется защита источников пита­ния от перегрузки. В этом случае, когда значение тока превысит допустимое, включается пороговое устройство и приводит испол­нительный механизм в состояние отключения нагрузки.

Устройства зашиты выполняются с автоматическим повторным включением питании после некоторого времени или с ограниче­нием мощности, отдаваемой нагрузке.


Схема устройства защиты от перегрузок по току (и потребля­емой мощности) показана на рис. 126. Устройство работает следу­ющим образом. Напряжение с вторичной обмотки трансформато­ра тока ТА, используемого в качестве преобразователя тока, вып­рямляется диодом VD1 и сглаживается фильтром R 7, С1. Перемен­ный резистор R1 используется для регулировки порога срабатыва­ния. В качестве порогового устройства используется логический элемент DD1.1, выполненный по КМОП-технологии. Уровни сра­батывания таких элементов стабильны и близки к половине на­пряжения питания микросхемы. При повышенном токе нагрузки после срабатывания элемента DDL ] запускается ждущий мульти­вибратор на основе логических элементов DD1.2 и DD1.3 (одно-вибратор), который формирует отрицательное выходное напря­жение, отключающее (или запирающее) цепь питания нагрузки. Через некоторое время, определяемое временем разряда конден­сатора С2 через резистор R3, одновибратор переключается в ис­ходное (ждущее) состояние с формированием на выходе скачка положительного напряжения. Это напряжение соответствует сиг­налу включения питания нагрузки или восстановлению нормаль­ного рабочего состояния источника питания.

Рис. 126. Электрическая схема устройства защиты от перегрузок по току с автоматическим восстановлением рабочего состояния источника питания

Аналогично работают устройства защиты от повышения на­пряжения и температуры, т.е. при скачке температуры или напря­жения соответствующий сигнал подается на логический элемент DD1.1, который запускает одновибратор, отключающий питание на определенное время.

В заключение необходимо отметить, что выбор схемы вторично­го источника питания и параметров

ее элементов определяется уров­нем требований к коэффициенту стабилизации напряжения и мощ­ностью, необходимой для питания электронной аппаратуры. Для очень мощной аппаратуры (1... 100 кВт - звуковая аппаратура кон­цертных залов, радиостанции и т. п.), а также на транспортных сред­ствах с управляемым приводом требования к стабильности напряже­ния ниже. В них используются мощные выпрямительные установки для трехфазного напряжения с использованием тиристоров.

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали "моста", выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного "моста" существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой "В" проводят ток, "подобно" диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой "ВЛ" - от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить "корпуса" вентилей "ВЛ" (выход "минус"), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой "В". Такая схема проста в монтаже и "наладке", но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять "балласт"), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара "диод-тиристор" крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь - самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и "погонять" его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут "обжигать" руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который "помогает" прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в "советских" игровых автоматах.

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы "диссонирует" с принципами надежности, но время подтвердило работоспособность схемы ("сжечь" тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод - при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров - чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько "притупляет" схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым - в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по "вторичке" и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание "диодов" VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Рис. 5. Принципиальная схема блока управления тиристорами.

Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.

Если фазировка открывающих импульсов "подходит", то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.

Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.

Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).

Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был "встроен" в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.

Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.

На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного "ключа" на VT2, VT3.

Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор "привязывает" потенциал точки "А" (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.

Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка "В") импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.

Рис. 6. Диаграмма импульсов.

Следующий элемент логики инвертирует напряжение "В", поэтому импульсы напряжения "С" имеют значительно большую длительность. Пока действует импульс напряжения "С", через резисторы R3 и R4 происходит заряд конденсатора C3.

Экспоненциально нарастающее напряжение в точке "Е", в момент перехода через логический порог, "переключает" логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки "Е" соответствует высокое логическое напряжение в точке "F".

Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке "Е":

  • меньшее сопротивление R4 - большая крутизна - Е1;
  • большее сопротивление R4 - меньшая крутизна - Е2.

Следует обратить внимание также на питание базы транзистора VT1 сигналом "В", во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке "F" раньше или позже, в зависимости от сопротивления R4:

  • меньшее сопротивление R4 - раньше появляется импульс - F1;
  • большее сопротивление R4 - позже появляется импульс - F2.

Усилитель на транзисторах VT2 и VT3 "повторяет" логические сигналы -точка "G". Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.

Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.

Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды - H1, большему - меньшая часть полупериода синусоиды - H2 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.

Рис. 7. Схема автоматического двухпредельного вольтметра.

Таким образом, различным величинам сопротивления R4 соответствует различная длительность "отрезков" синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением "логики" - пороги переключения элементов стабильны.

Конструкция и налаживание

Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения - приходится менее чувствительный отбраковывать).

Измерять напряжение на нагрузке можно каждый раз "подходящим" вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).

Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.

Для "загрубления" шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.

Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:

  • размыкают подстроечное сопротивление R1 - схема вольтметра переключается на высоковольтный предел;
  • вместо зеленого светодиода HL2 включается красный светодиод HL1.

Красный, более заметный, цвет специально выбран для шкалы больших напряжений.

Внимание! Подстройка R1(шкала 0...300) производится после подстройки R2.

Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.

Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.

Сопротивление лампы оптрона равно сотням ом, а фоторезистора - мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 - на отдельных радиаторах.

Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.

Рис. 8. Вид устройства сверху.

На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа - шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи "300 В".

Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.

Рис. 9. Вид на лицевую панель устройства.

Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.

Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).

Необходимо между точками "D" и "E" блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12...13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).

Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного "подзаряженным" аккумулятором вместе с автоматическим пусковым устройством.

Рис. 10 . Автоматизация режима запуска двигателя автомобиля.

По мере увеличения бортового напряжения автоматика "закрывает" подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.

Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.

Широкое применение тиристоров при регулировании напря­жения объясняется следующими их преимуществами по сравне­нию с рассмотренными ранее схемами:

Большая экономичность вследствие малого падения напряжения в проводящем состоянии (около 2 В);

Высокая скорость регулирования, позволяющая обеспечить стабилизацию выпрямленного напряжения и осуществить защиту выпрямителя от перегрузок и коротких замыканий;

Меньшая необходимая мощность управления;

Меньшие габаритные размеры и масса.

Управляемые вентили - тиристоры - могут находиться в двух крайних состояниях (рис. 122, а): открытом (участок ВС) и …
закры­том (участок 0А). Момент включения тиристора можно регулиро­вать, подавая управляющий импульс тока на р-п -переход, приле­гающий к катоду (рис. 122, б). Ток нагрузки, проходя через от крытый тиристор, смещает все три

Рис. 122. Вольтамперная характеристика тиристора (а), его структура, (б) и условное графическое обозначение (в): Iу - ток управления; А - анод; К - катод: УЭ - управляющий электрод/

Рис. 123. Структурная схема управляемого выпрямителя (и), принципи­альная схема простейшего РВБ (б) и диаграммы напряжений на его входе и выходе (в)

eго р-п -перехода в прямом направлении, и управляющий электрод (УЭ) теряет влияние на процессы, происходящие в тиристоре. При падении прямого тока до нуля после рассасывания заряда неосновных носителей в базо­вых областях тиристор запирается и его управляющие свойства восстанавливаются. Условное графическое обозначение тиристо­ра приведено на рис. 122, в.

На рис. 123,а приведена структурная схема управляемого вы­прямителя на управляемых вентилях.

Принципиальным отличием схемы управляемого выпрямите­ля (УВ) от неуправляемого является наличие в ней регулируемого вентильного блока (РВБ) и устройства управления (УУ), регули­рующего напряжение сети. Простейшая схема РВБ на одном ти­ристоре VS приведена на рис. 123, б. Следует напомнить, что для включения тиристора необходимо выполнение следующих усло­вий: напряжение на его аноде должно быть положительным, но меньшеU ПР.ВКЛ. , а к управляющему электроду (УЭ) должно быть приложено положительное напряжение, соответствующее отпи­рающему току. Первое условие выполняется для положительных полуволн напряжения U 2 , а для выполнения второго условия к управляющему электроду тиристора подводится отпирающий (уп­равляющий) положительный импульс напряжения U y .

В момент прихода управляющего импульса, соответствующего углу отпирания а, тиристор теряет управляющие свойства, поэто­му, когда напряжение на аноде станет равным нулю, произойдет его выключение. Форма напряжения на резистивной нагрузке R H без фильтра показана на рис. 123, в. Момент включения тиристора

Можно регулировать в пределах положительной полуволны вы­ходного напряжения U 2 трансформатора, т.е. в диапазоне 0 ≤α≤π. При этом если тиристор включается при α = 0, то среднее выпрямленное напряжение нагрузки U Н.С.В. =0. Такой способ уп­равления тиристором называется фазоимпульсным.

В рассмотренной схеме управляемого выпрямителя пульсации напряжения нагрузки довольно большие, поэтому для их умень­шения необходимо включить сглаживающий фильтр. Следует от­метить, что в тиристорных управляемых выпрямителях использу­ют фильтры, начинающиеся с дросселя, так как при подключе­нии сразу емкостного фильтра заряд конденсатора через открыв­шийся тиристор может сопровождаться большим током, который может вывести тиристор из строя.

Рассмотрим работу схемы двухфазного управляемого выпря­мителя (рис.124, а) с индуктивно-емкостным фильтром. В этой схеме возможны два режима работы: без блокировочного диода (VD) и с блокировочным диодом. Различие этих режимов заклю­чается в способе выключения тиристоров.

Рис. 124. Схема двухфазного управляемого выпрямителя ), временные диаграммы напряжений на входе и выходе (б) и регулировочные кри­вые (в): 1 - без диода VD ; 2 - при наличии диода VD.

Работа выпрямителя без блокировочного диода происходит следующим образом. С поступлением управляющего импульса тиристор VS1 включается с углом отпирания α. На выход выпря­мителя передается напряжение первой фазы вторичной обмотки U’ 2 . При t ≥ п напряжение U’ 2 изменяет полярность на отрицатель­ную, но тиристор VS1 не закрывается, так как через него прохо­дит ток дросселя фильтра L ф, и напряжение самоиндукции обес­печивает его открытое состояние.

При t = α + п включается тиристор VS2, который передает на выход напряжение U" 2 второй фазы вторичной обмотки, В этом случае ток дросселя фильтра L ф переключается на вторую фазу, а тиристор VS1 закрывается. Напряжения на выходе выпрямителя U o и нагрузке U H показано на рис. 124, б (заштрихованные обла­сти).

При достаточно большом значении L ф = R H /ωугол включения тиристоров можно регулировать от нуля до π/2, как показано на рис. 124, в (кривая 1при L =∞).

Напряжение нагрузки растет с уменьшением угла α и умень­шается при его увеличении.

При работе выпрямителя с блокировочным диодом VD тири­сторы VS VS 2выключаются, когда напряжение на его аноде становится равным нулю. При этом протекание тока в дросселе фильтра не прерывается из-за включения диода VD.

В результате часть периода от πдо π+ α ток в дросселе (а зна­чит, и в нагрузке) проходит через диод VD, и напряжение на вы­ходе выпрямителя не изменяет полярности, как показано на рис. 124, б.

Угол α отпирания тиристора в схеме с диодом VD можно ре­гулировать от нуля до π, как показано на рис. 124, в (кривая 2 при L = 0).

При одинаковом угле отпирания тиристоров в схеме без бло­кировочного диода напряжение на нагрузке меньше, чем в схеме с блокировочным диодом, так как в течение части периода повто­рения входного напряжения на его выход передается отрицатель­ное напряжение.

Мостовой управляемый выпрямитель. Мостовой выпрямитель можно построить с меньшим (чем четыре) числом тиристоров, так как для обеспечения управления достаточно включить в каж­дую из двух последовательных цепей, состоящих из двух диодов, один диод управляемый, а другой - неуправляемый (рис. 125, а), Применение двух управляемых диодов вместо четырех (см. рис. 124) позволяет упростить схему управления и удешевить стоимость вен­тильной группы.

Рассмотрим работу схемы мостового выпрямителя, в которой одновременно работают тиристор VS1 и вентиль VD2 или тирис­тор VS2 и вентиль VD 1. Временные диаграммы напряжений и то-

Рис. 125. Мостовая схема управляемого выпрямителя (а) и временные диаграммы напряжений и токов в этой схеме (б)

ков при работе такой схемы на индуктивную нагрузку показаны на рис. 125, 6.

В момент времени t 1на управляющий электрод тиристора VS 1подается импульс управления, открывающий его. В интервале вре­мени от t 1 до t 2ток протекает через тиристор VS 1и вентиль VD,. и напряжение на выходе выпрямителя повторяет входное напря­жение U 2. В момент времени t 3 напряжение U 2изменяет свою полярность, и вентиль VD 2запирается, а вентиль VD 1открывает­ся. Переключения тиристоров в этот момент времени произойти не может, так как на управляющий электрод тиристора VS2 не поступает импульс управления. В итоге в течение периода време­ни от t 2до t 3 открыты тиристор VS 1и вентиль VD2 и через них протекает ток нагрузки I 0 .

Выпрямленное напряжение U 0 в этом интервале времени рав­но нулю (так как выход выпрямителя закорочен), а ток нагрузки поддерживается за счет энергии, запасенной в дросселе L. В мо­мент времени t 3за счет управляющего импульса открывается ти­ристор VS2, а тиристор VS 1 запирается, так как на него при этом подается обратное напряжение.

В интервале времени от t 3до t 4ток проводят и тиристор VS 2, и вентиль VD 1, а напряжение на выходе выпрямителя U 0 анало­гично входному напряжению U 2, но с противоположным зна­ком,

В момент времени U вновь происходит коммутация тока в группе неуправляемых вентилей: запирается вентиль VD1 и открывается вентиль VD2.

В интервале времени от t4 до t5 тиристор VS2 и вентиль VD1 открыты, напряжение на выходе выпрямителя U0 = 0, а ток на­грузки Iо поддерживается неизменным за счет энергии, запасен­ной в дросселе. В интервале времени от t5 до t6 процессы идентич­ны процессам в интервале от t1 до t2.

Как видно из рис. 125, б, временная диаграмма выпрямленного напряжения U0 в этой схеме такая же, как и в схеме выпрямителя с активной нагрузкой.

УСТРОЙСТВА ЗАЩИТЫ ОТ ПЕРЕГРУЗОК

Вторичные источники питания часто снабжают устройствами электронной защиты (УЗ) от перегрузоки короткого замыкания. Такие устройства включают в себя следующие элементы: датчик контролируемой величины (тока, напряжения или температуры); пороговое устройство (ПУ) или схему сравнения; исполнительное устройство (ИУ). Чаще всего требуется защита источников пита­ния от перегрузки. В этом случае, когда значение тока превысит допустимое, включается пороговое устройство и приводит испол­нительный механизм в состояние отключения нагрузки.

Устройства зашиты выполняются с автоматическим повторным включением питании после некоторого времени или с ограниче­нием мощности, отдаваемой нагрузке.


Схема устройства защиты от перегрузок по току (и потребля­емой мощности) показана на рис. 126. Устройство работает следу­ющим образом. Напряжение с вторичной обмотки трансформато­ра тока ТА, используемого в качестве преобразователя тока, вып­рямляется диодом VD1 и сглаживается фильтром R 7, С1. Перемен­ный резистор R1 используется для регулировки порога срабатыва­ния. В качестве порогового устройства используется логический элемент DD1.1, выполненный по КМОП-технологии. Уровни сра­батывания таких элементов стабильны и близки к половине на­пряжения питания микросхемы. При повышенном токе нагрузки после срабатывания элемента DDL ] запускается ждущий мульти­вибратор на основе логических элементов DD1.2 и DD1.3 (одно-вибратор), который формирует отрицательное выходное напря­жение, отключающее (или запирающее) цепь питания нагрузки. Через некоторое время, определяемое временем разряда конден­сатора С2 через резистор R3, одновибратор переключается в ис­ходное (ждущее) состояние с формированием на выходе скачка положительного напряжения. Это напряжение соответствует сиг­налу включения питания нагрузки или восстановлению нормаль­ного рабочего состояния источника питания.

Рис. 126. Электрическая схема устройства защиты от перегрузок по току с автоматическим восстановлением рабочего состояния источника питания

Аналогично работают устройства защиты от повышения на­пряжения и температуры, т.е. при скачке температуры или напря­жения соответствующий сигнал подается на логический элемент DD1.1, который запускает одновибратор, отключающий питание на определенное время.

В заключение необходимо отметить, что выбор схемы вторично­го источника питания и параметров

ее элементов определяется уров­нем требований к коэффициенту стабилизации напряжения и мощ­ностью, необходимой для питания электронной аппаратуры. Для очень мощной аппаратуры (1… 100 кВт - звуковая аппаратура кон­цертных залов, радиостанции и т. п.), а также на транспортных сред­ствах с управляемым приводом требования к стабильности напряже­ния ниже. В них используются мощные выпрямительные установки для трехфазного напряжения с использованием тиристоров.

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

Рис. 1.

Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке U н выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке U н , а выпрямление производится другими приборами.

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные U выпр . Частота пульсаций f п на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100 Hz при питании от сети 50 Hz . Схемауправления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой t з относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя U выпр становится равным нулю.

Рис. 2.

Рисунок 2 выполнен для случая, когда задержка t з превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение U н на нагрузке. Пульсации напряжения на нагрузке U н сглаживаются конденсатором фильтра C ф . Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра C ф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Т п.

Теперь представим, что задержка момента включения тиристора t з равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.


Рис. 3.

В этом случае напряжение на нагрузке U н также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда U выпр проходит через максимум, т. е. t з = T п /2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра C ф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. t з < T п /2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения t з , частота сети, а значит, частота и период T п пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке U н возникает желание включать тиристор намного раньше половины периода пульсаций.

Предположим, что так мы и поступили, т. е. установили время задержки t з намного меньшее Т п /2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра C ф (см. первый импульс на рис. 4).


Рис. 4.

Оказывается, что при малом времени задержки t з возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке U н оказывается больше напряжения на выходе выпрямителя U выпр . В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.


Рис. 5.

Здесь тиристор нагружен на пусковое сопротивление R п , а конденсатор фильтра C R н подключены через пусковой диод VD п . В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра C ф .После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление R п и, затем, когда напряжение на R п превысит напряжение на нагрузке U н , открывается пусковой диод VD п и анодный ток тиристора подзаряжает конденсатор фильтра C ф . Сопротивление R п выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса t з . Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VD п , на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление R п к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление R п приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.


Рис. 6.

Низковольтные источники питания с тиристорным регулятором

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.


Рис. 7.

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5 m F ставят 1 m F , и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1 m F .

2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3 k W на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15 k W , а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10 k W и 12 k W на рис. 7).

5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.


Рис. 8.

В этой схеме использован двухполупериодный выпрямитель со средней точкой т. к. в ней содержится меньше диодов, поэтому нужно меньше радиаторов и выше КПД. Силовой трансформатор имеет две вторичные обмотки на переменное напряжение 15 V . Схема управления тиристором здесь состоит из конденсатора С1, сопротивлений R 1- R 6, транзисторов VT 1 и VT 2, диода VD 3.

Рассмотрим работу схемы. Конденсатор С1 заряжается через переменное сопротивление R 2 и постоянное R 1. Когда напряжение на конденсаторе C 1 превысит напряжение в точке соединения сопротивлений R 4 и R 5, открывается транзистор VT 1. Коллекторный ток транзистора VT 1 открывает VT 2. В свою очередь, коллекторный ток VT 2 открывает VT 1. Таким образом, транзисторы лавинообразно открываются и происходит разряд конденсатора C 1 в управляющий электрод тиристора VS 1. Так получается запускающий импульс. Изменяя переменным сопротивлением R 2 время задержки запускающего импульса, можно регулировать выходное напряжение схемы. Чем больше это сопротивление, тем медленнее происходит заряд конденсатора C 1, больше время задержки запускающего импульса и ниже выходное напряжение на нагрузке.

Постоянное сопротивление R 1, включенное последовательно с переменным R 2 ограничивает минимальное время задержки импульса. Если его сильно уменьшить, то при минимальном положении переменного сопротивления R 2 выходное напряжение будет скачком исчезать. Поэтому R 1 подобрано таким образом чтобы схема устойчиво работала при R 2 в положении минимального сопротивления (соответствует наибольшему выходному напряжению).

В схеме использовано сопротивление R 5 мощностью 1 W только потому, что оно попалось под руку. Вероятно вполне достаточно будет установить R 5 мощностью 0.5 W .

Сопротивление R 3 установлено для устранения влияния наводок на работу схемы управления. Без него схема работает, но чувствительна, например, к прикосновению к выводам транзисторов.

Диод VD 3 устраняет влияние тиристора на схему управления. На опыте я проверил и убедился что с диодом схема работает устойчивее. Короче, не нужно скупиться, проще поставить Д226, коих запасы неисчерпаемы исделать надежно работающее устройство.

Сопротивление R 6 в цепи управляющего электрода тиристора VS 1 повышает надежность его работы. Иногда это сопротивление ставят большей величины или не ставят вовсе. Схема без него обычно работает, но тиристор может самопроизвольно открываться под действием помех и утечек в цепи управляющего электрода. Я установил R 6 величиной 51 W как рекомендовано в справочных данных тиристоров КУ202.

Сопротивление R 7 и диод VD 4 обеспечивают надежный запуск тиристора при малом времени задержки запускающего импульса (см. рис. 5 и пояснения к нему).

Конденсатор C 2 сглаживает пульсации напряжения на выходе схемы.

В качестве нагрузки при опытах регулятором использовалась лампа от автомобильной фары.

Схема с отдельным выпрямителем для питания цепей управления и запуска тиристора приведена на рис. 9.


Рис. 9.

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.


Рис. 10.

Для сглаживания пульсаций выходного напряжения может быть применен LC -фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.


Рис. 11.

Я применил именно LC -фильтр по следующим соображениям:

1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

В фильтре использован серийный дроссель Д255В.

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.


Рис. 12.

Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1 k W поступает во времязадающий конденсатор 1 m F и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.


Рис. 13.

Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4 N 35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100 k W , при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.


Рис. 14.

При регулировке схемы управления тиристором иногда бывает полезна подстройка порога срабатывания транзисторов. Пример такой подстройки показан на рис. 14.

Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32 V . Номиналы деталей, указанные на схеме, подобраны под это напряжение.


Рис. 15.

Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5 V до 40 V , что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R 7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R 7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.


Рис. 16.

Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R 7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

Высоковольтные источники питания с тиристорным регулятором

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов.Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.


Рис. 17.

Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R 1 и R 2, выпрямительный мост VD 1 и стабилитроны VD 2 и VD 3. Эти детали предназначены для питания от сети 220 V . Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200 V , т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R 5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT 2, после чего транзисторы VT 1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R 4), а также минимального сопротивления во времязадающей цепи (при помощи R 5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.


Рис. 18.

В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10 W . Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.


Рис. 19.


Рис. 20.

Печатная плата SCR 1 M 0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP . Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500 V , потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

Рис. 21.

Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR 1 M 0 имеются дополнительные выводы от общего провода GND 1 и GND 2, от выпрямителя DC 1

Разработка и налаживание выпрямителя с тиристорным регулятором SCR 1 M 0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR 1 M 0 и осциллограмм.


Рис. 22. Вид модуля SCR 1 M 0 со стороны деталей


Рис. 23. Вид модуля SCR 1 M 0 со стороны пайки


Рис. 24. Вид модуля SCR 1 M 0 сбоку

Таблица 1. Осциллограммы при малом напряжении

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

50 В/дел

2 мс/де


Таблица 2. Осциллограммы при среднем напряжении

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Таблица 3. Осциллограммы при максимальном напряжении

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

1 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

Рис. 25. Схема SCR 1 M 0 с доработками