Толщиномер своими руками схемы. Толщиномер для лакокрасочного покрытия автомобиля: принцип работы, какой выбрать, как пользоваться

При проведении работ, связанных с покраской металлических поверхностей, зачастую появляется потребность определения толщины лакокрасочного покрытия автомобиля. Существует несколько способов это сделать.

В промышленном производстве для этого как правило используют ультразвуковые толщиномеры, которые функционируют по принципу эхолокации. К лакокрасочному покрытию прикладывается датчик, являющийся по сути пьезо-преобразователем, на который поступают серии ультразвуковых импульсов. Ультразвуковой электросигнал следует сквозь слой краски автомобиля, а затем отражается от стальной поверхности.

Отражённый электросигнал фиксируется датчиком, и поступает на фазовый детектор, который сопоставляет фазу отправленного и отражённого импульса, а после формирует сигнал, соразмерный времени запаздывания, а следовательно и толщине краски.

Данный метод довольно точен, однако крайне сложен для самостоятельного изготовления. Значительно проще изготовить толщиномер на основе индуктивных или ёмкостных датчиков.

Если покрытие лакокрасочное, то возможно использовать ёмкостный датчик, который состоит из двух небольших металлических пластин. Они прикреплены к диэлектрической подложке и прикладываются к исследуемой поверхности.

Между пластинами замеряется фактическая ёмкость, которая находится в прямой зависимости от диэлектрической проницаемости лакокрасочного покрытия авто и от его толщины. Калибровку толщиномера следует выполнять для каждого типа лакокрасочного покрытия.

Наиболее удобны в применении индуктивные датчики. Такой датчик по сути миниатюрный Ш-образный трансформатор, сделанный с одной стороны катушки, без замыкающих пластин. Если незамкнутой стороной такого датчика приложить к исследуемой поверхности, то от толщины немагнитного зазора, создаваемого лакокрасочным покрытием, меняется индуктивность данной катушки.

Один из методов замера состоит в том, что катушку используют в роли LC — генератора НЧ. Электросигнал поступает на частотный детектор, а после на модуль индикации. Метод неплох, однако довольно сложен. Электрическая схема несложного толщиномера автомобиля, но довольно точного приведена в данной статье ниже.

Прибор для измерения толщины лакокрасочного покрытия автомобиля — описание

Прибор для измерения толщины лакокрасочного покрытия автомобиля — генератор постоянной частоты и амплитуды, последовательно с выходом, которого подсоединяется индуктивный датчик. Напряжение после датчика детектируется, нормализуется и подаётся на блок индикации.

Для отображения полученной информации возможно использовать малогабаритный стрелочный индикатор, откалибровав его шкалу, однако более подходящей является светодиодная индикация.

В данном толщиномере в роли датчика применяется трансформатор от абонентского громкоговорителя. Как уже было сказано выше, трансформатор не замкнут и пропитан эпоксидной смолой совместно с другими радиоэлементами в корпусе подходящих размеров.

Рабочая часть датчика отшлифована до блеска. Преимущества устройства — его малые размеры и способность определять толщину любых немагнитных лакокрасочных покрытий, даже покрытий которые могут проводить электрический ток, к примеру, толщину алюминиевого напыления или гальванического покрытия из меди на стальной поверхности. Толщиномер калибруется при помощи пластин (немагнитных) заранее известной толщины.

Детали прибора для измерения толщины покрытия

В электрической схеме возможно использовать различные операционные усилители с небольшим током потребления и низким напряжением питания. У используемых ОУ величины сопротивлений между выводами 4 и 8 определяют ток потребления и составляют 1…1,5 МОм.

Возможно применить сдвоенные ОУ, к примеру LM358 или подобные. Микросхему К561ЛА7 возможно поменять на К561ЛЕ5 или произвольные инверторные логические элементы. Если необходимо увеличить точность АЦП — взамен цифровой микросхемы возможно использовать счетверённый компаратор LM339. Значительно упростить электросхему возможно использовав микросхему A277 (К1003ПП1) для линейной световой индикации, правда увеличится ток потребления.

В данном случае микросхемы К561ЛА7 и КР1533ИД3 вместе с сопротивлениями обвязки не понадобятся – контакт входа микросхемы подсоединяется на вывод второго ОУ. в схеме применяется не только в качестве генератор стабильной частоты для индуктивного датчика, но и в роли инвертора отрицательной полярности для создания напряжения -2 вольт, нужного для нормального функционирования операционного усилителя.

Безошибочно собранная электрическая схема начинает функционировать сразу — остаётся лишь индивидуально откалибровать светодиодную индикацию подстроечных сопротивлений и немагнитных пластин заранее известной толщины.

Магнитный толщиномер покрытий считается более продвинутым способом узнать, насколько же надежным является слой краски на изделии. Почему он такой технологичный, но не так популярен, мы обсудим в этой статье.

Как работает толщиномер с магнитной хваткой?

Современные технологии приборостроения позволяют специалистам получить данные бесконтактными способами. Чтобы увидеть то, что скрыто внутри двигателя, механизма, организма человека, давно не нужно разбирать объект исследования. Медицина имеет на вооружении аппараты ультразвуковой диагностики и прочие достижения науки, а в технике применяются схожие по принципу действия приспособления, например, толщиномеры и прочие устройства, позволяющие с легкостью получить точные данные об исследуемом объекте. Чтобы, к примеру, исследовать двигатель автомобиля, нужен технический эндоскоп, а для внешнего обследования кузова – толщиномер.

Действуют они по принципу магнитной индукции, отмечая сопротивление магнитной цепи и воздействие на неё толщины покрытия. Снимаемые показания фиксируются прибором в порядке: основание – покрытие – датчик. Существуют другие виды толщиномеров (не магнитные), которые предназначены для получения данных о покрытии с основанием из цветных металлов. Они действуют по принципу вихревых токов, и о них будет рассказано ниже. Сейчас поговорим о магнитных типах этих приборов.

Где авторитетно показание толщиномера?

Магнитный толщиномер лакокрасочных покрытий чрезвычайно полезен в станкостроении, автомобилестроении, судостроении и самолетостроении. К примеру, во время производственного процесса требуется получить данные о толщине хромового покрытия на торцах плоских деталей, проконтролировать наличие брака или измерить толщину покрытия готовых колец компрессионных двигателей внутреннего сгорания.

Кроме того, магнитные толщиномеры применяются отделами технического контроля, лабораториями, специализированными мастерскими и просто в ремонтных работах. Его показаниям доверяют эксперты-оценщики страховых компаний и другие лица, заинтересованные в измерении толщины покрытия. В основу работы прибора положен принцип использования свойств постоянных магнитов. Магнитное основание, на которое нанесено покрытие (объект измерения), взаимодействует с магнитом, встроенным в прибор.

Сила этого взаимодействия и является базовым показателем измерения толщины поверхности: чем слабее сила, тем толще покрытие.

Как правильно работать с прибором?

Пользоваться толщиномером несложно: не требуются специальные технические навыки. Прибор подносят к объекту, прижимают щупом к поверхности, и датчик, который встроен в этот щуп, измеряет показания от конца датчика до основания. Через короткое время, после звукового сигнала, на экране появляется результат. Возможна постановка задачи для однократного измерения, возможна настройка периодического обновления показаний через равные промежутки времени. Таким образом, измеряется толщина покрытия. Некоторые модели (например, МТ-201К ) имеют в комплекте столик для снятия показаний.

В работе устройства существуют некоторые ограничения, упомянутые в его технических характеристиках. На том, что нежелательно, остановимся подробнее. Самым главным является то, что магнитный прибор не способен к работе с основаниями из других материалов, кроме ферромагнитных. Об этом было сказано вначале, когда шла речь о принципе работы прибора. Как определить пригодность металлического основания? Нужно поднести к нему магнит. Если притяжение ощутимо, значит основание годно к измерению магнитным толщиномером. Если притяжение заметно слабое, то придется использовать другой вид прибора. Основания из дерева, пластика, таких металлов, как медь и алюминий, не пригодны для работы с описываемым прибором. Также невозможна работа с сырым покрытием.

Какие ещё покрытия могут выдать погрешность в расчете данных? Это никель, краска с примесью железа (если окрашивание было произведено по ржавому металлу), покрытия, подверженные деформации. Поролон, пенопласт – тоже не желательны для исследований. Полученные данные будут точнее, если основание будет однородным, а не представляет собой прикрепленные друг к другу пластинки. Это связано с тем, что сочетание близко расположенных металлических пластин будет вызывать наложение их магнитных полей друг на друга.

Ещё одним противопоказанием к работе является слишком тонкое основание. Если его толщина меньше, чем 0,5 миллиметров, то точность измерения снижается (не очень значительно). Диаметр основания тоже имеет значение: если он меньше 10 миллиметров, это также нежелательно. Бывают случаи, когда данные на выходе должны быть уточнены согласно эталонным. Это случаи, когда основание слишком тонкое (0,3-0,5 мм), либо слишком толстое (свыше 5 мм), либо исследуются два и более основания, различных по диаметру. Процесс уточнения показаний прибора называется калибровкой. Для калибровки устройство комплектуется образцами стали и алюминия, которые служат объектами контроля, а также для сравнения полученных показаний.

Чем заменить магнитный толщиномер, если основание не магнитно?

Как было обещано, сейчас расскажем о других видах толщиномеров. Помимо магнитного, выпускаются механические, вихретоковые, электромагнитные и электромагнитно-вихретоковые. В ремонтных и строительных работах популярностью пользуется механический толщиномер. Предназначен он для того, чтобы проконтролировать слой краски, которым покрывают поверхность. Это обеспечивает, во-первых, равномерное нанесение покрытия, во-вторых, уменьшает расход материала.

Часто влажный лак или краска выглядят, как будто они нанесены равномерно. Однако после высыхания обнаруживаются неплотно закрашенные участки поверхности. Это устраняется путем закрашивания этих мест и последующего покрытия краской всего объекта, что приводит к двойному перерасходу. Механический толщиномер используют для снятия данных о влажном слое лакокрасочных материалов, которыми был покрыт объект. Щуп или гребенка имеет маркеры на зубцах. Его прижимают к поверхности на несколько секунд, затем осматривают. Относительно отпечатка материала на зубцах между маркерами делают вывод о толщине слоя.

Для оснований из цветных металлов используют вихретоковые толщиномеры. В основе лежит принцип вихревых токов, или токов Фуко. Через катушку проходит ток (частота свыше 1 МГц), который порождает переменное магнитное поле, что приводит в действие датчики на щупе. При прижатии прибора к токопроводящему материалу (поверхность объекта) происходит порождение на нем токов Фуко. Эти вихревые токи генерируют свои, противоположные электромагнитные поля, которые подвергаются измерению датчиками.

Подводя итоги, следует сказать, что в названии прибора заложена подсказка о принципе его работы: в магнитном толщиномере используется принцип взаимодействия магнита, встроенного в устройство, и магнитной поверхности объекта. Его применяют для измерения толщины покрытия на основании из черных металлов. В механическом толщиномере следует визуально осмотреть краску на зубцах щупа и сделать вывод о данных. С точки зрения точности показателей он является самым неточным. Вихретоковая модель помогает там, где невозможно использовать магнит – на непроводящей поверхности и цветных металлах.

Данная схема толщиномера лакокрасочных покрытий автомобиля может с высокой степенью точности определить, был ли подвергнут проверяемый автомобиль процедуре кузовного ремонта, что особенно актуально перед покупкой подержаного друга на колесах.

Собранный на отечественном таймере КР1006ВИ1 генератор генерирует прямоугольные импульсы с частотой следования около 300 Гц и скважностью два. На выходе генератора, с целью повышения точности результатов измерений толщины лакокрасочного покрытия, имеется фильтр низкой частоты на резисторах и конденсаторах R3, C2, R4, R5. Подстроечное сопротивление R5 является регулятором уровня, которым задают оптимальный уровень работы устройства. На микросхеме LM385 собран усилитель низкой частоты.

Трансформатор является собственно измерительным датчиком. Он сделан из Ш-образных пластин без замыкающих пластин, т.к их функцию роли выполняет кузов автомобиля. Таким образом, чем выше толщина лакокрасочного покрытия, тем выше немагнитный зазор и поэтому меньше связь между катушками трансформатора. Для отсечения высокочастотных помех на выходе усилителя имеется фильтр R6C4. Конденсатор C5 разделительный.

Результаты измерений толщиномера лакокрасочного покрытия автомобиля получают с помощью тестера с диода КД522А. Стабилизатор 78L05 позволяет работать схемы с заложенной точностью измерений и при снижении питания батареи "крона" до 7В.

Переключатель SB1 позволяет проверить степень разреженности батареи питания. Измерение осуществляют при нажатой кнопки SB2.

Трансформатор был позаимствован от радиоприемника с магнитопроводом Ш 5х6 и слегка перемотан. Первичная обмотка, содержит 200 витков провода ПЭЛ 0,15. Вторичная - 450 витков этого же провода. При сборке пластин трансформатора их требуется промазать эпоксидным клеем.

Настройка автомобильного толщиномера осуществляют с установки движка потенциометра R7 в крайнее левое положение. Трансформатор требуется поместить вдали от любых металлических предметов. Вращая движок сопротивления R5 нужно добиться отклонения стрелки микроамперметра на пять процентов. Затем трансформатор прислоняют к чистому стальному листу и изменяя значение сопротивления R7 добиваются максимально возможного отклонения стрелки микроамперметра. Затем просто калибруют прибор, подкладывая между стальным листом и трансформатором листы бумаги толщиной 0,1 мм.

Для получения результатов измерения толщины лакокрасочного покрытия автомобиля нужно приложить трансформатор к исследуемой поверхности, затем нажать кнопку SB2 и слегка покачивая прибором из стороны в сторону добиться максимально возможного отклонения стрелки амперметра. Толщина заводского лакокрасочного покрытия в автомобиле обычно около 0,15…0,3 мм, а краской «металлик» 0,25…0,30мм.

Предлагаю собрать схему измерителя толщины на индуктивном датчике. Датчиком как и в предыдущем случае будет миниатюрный Ш – образный трансформатор, собранный с одной стороны катушки, без замыкающих пластин. Если его открытой стороной прислонить к металлической поверхности, то в зависимости от толщины немагнитного зазора, изменяется индуктивность катушки. Один из способов измерения толщины состоит в том, что катушку подсоединяют в качестве индуктивности LC - генератора. Затем сигнал поступает на детектор, а далее на устройство индикации.

В данной статье расскажем про измеритель толщины лакокрасочных покрытий (схема).

Продавал я как-то свой автомобиль, а чтобы не затягивать процесс продажи надолго, я не заморачивался с определением цены, за которую его продам. Я прошёлся по авторынку, узнал по чём продают аналогичные модели автомобилей, после чего, вычел из «максимума» стоимость устранения основных, явно заметных недостатков и менее чем через час автомобиль был продан. Одним из недостатков было наличие небольшой вмятины на левом переднем крыле, мелкие царапины на капоте. Позже я узнал, что покупатель профессионально занимается кузовными работами. Он устранил «кузовные» недостатки и ровно через неделю продал мой бывший автомобиль, дополнительно заработав тысячу заокеанских рублей. Когда я спросил его, что он сделал с крылом, он ответил, что не морочился, а наложил полусантиметровый слой шпаклевки. Как известно, толстый слой шпаклевки имеет свойство рассыхаться и отлетать. Впоследствии, его покупатели явно «влетели в копеечку».

Для исключения подобных неприятностей, которые Вам могут устроить предприимчивые перекупщики автомобилей, когда у Вас возникнет необходимость купить «железного коня» и предназначена эта статья.

Описанный прибор актуален, когда при исследовании состояния кузова автомобиля нередко возникает необходимость измерения толщины лакокрасочного покрытия. Прибор позволяет контролировать толщину лакокрасочного покрытия, нанесенного на любые изделия из черного металла.

При измерении толщины покрытия прибор прикладывают к контролируемой поверхности, нажимают на кнопку, слегка покачивая и поворачивая прибор, добиваются максимального отклонения стрелки и считывают значение толщины. Толщина покрытия кузовов автомобилей обычной краской находится в пределах 0,15…0,3 мм, а краской «металлик» - от 0,25 до 0,35 мм. Если толщина окажется больше, то будьте осторожны при покупке такого автомобиля, могут появиться не преднамеренные расходы.

Измеритель толщины лакокрасочных покрытий построен по простой схеме, обеспечивает приемлемую точность измерения, а главное компактность и «мобильность» позволяет использовать его на автомобильном рынке, при выборе автомобиля.

Принципиальная схема измерителя толщины лакокрасочных покрытий представлена на рисунке ниже.

Основа схемы взята из одного из популярных журналов. Автор устройства — Ю.Пушкарев. При изучении его схемы, технических недочётов я сначала не нашёл, но после сборки и проверки очередной раз понял, почему у начинающего радиолюбителя пропадает желание становиться радиолюбителем. Я устранил в схеме недостатки, после чего прибор реально заработал так, как это надо.

Устройство питается от батареи «Крона», потребляемый ток не превышает 35 мА, работоспособность прибора сохраняется при снижении напряжения батареи до 7 В. Рабочий температурный интервал - от +10 до +30 С. Прибор собран в пластмассовой коробке размерами 120x40x30 мм.

Задающий генератор, собранный на таймере DD1 (см. схему на рис. 1), вырабатывает прямоугольные импульсы частотой 300 Гц и скважностью 2. Интегрирующая цепочка R3C2 преобразует прямоугольные импульсы в синусоиду, что позволяет повысить точность измерения. Регулятором уровня сигнала - подстроечным резистором R5 - устанавливают оптимальный режим измерительного трансформатора Т1. Амплитуда сигнала на выходе УЗЧ DA1 примерно 0,5 В.

Ш-образные пластины измерительного трансформатора собраны встык, однако без пакета замыкающих пластин. Роль магнитного замыкателя здесь играет металлическая основа, на которую нанесено исследуемое лакокрасочное покрытие. Чем оно толще, тем больше немагнитный зазор в магнитопроводе измерительного трансформатора. Большему зазору соответствует меньшая связь между обмотками, следовательно, меньшее напряжение на вторичной обмотке трансформатора. Цепь R6C4 - дополнительный фильтр, устраняющий ВЧ составляющие сигнала. Конденсаторы С5 и С7 - разделительные.

Микроамперметр РА1 показывает выпрямленный диодом VD1 ток вторичной обмотки трансформатора. Стабилизатор напряжения DA2 позволяет сохранять стабильность коэффициента усиления УЗЧ DA1 при изменении степени разряженности батареи питания GB1. Резистор R8 и кнопочный переключатель SB2 позволяют периодически проверять напряжение батареи. Измерение проводят при нажатой кнопке SB1.

Транзисторный каскад VT1R9R10R11 предназначен для подачи начального смещения — создания порога, запирающего диод VD1. Благодаря ему, стрелка микроамперметра отклоняется только при наличии в поле измерительного трансформатора магнитного замыкателя. Это необходимо для установки максимально-измеряемой толщины и увеличивает точность измерения. При указанных номиналах резисторов, пределы измеряемой толщины от 0 до 2,5 мм. Точность измерения при толщине от 0 до 1,0 мм - ±0,05 мм, а от 1,0 до 2,5 мм - ±0.25 мм. Для уменьшения пределов измерения от 0 до 0,8 мм, а следовательно и увеличения точности измерения, резистор R10 увеличивают до 3,9 кОм. Это позволяет поднять порог отпирания диода VD1, и «растягивает» шкалу.

Детали прибора размещены на печатной плате (рис.), выполненной из фольгированного с одной стороны стеклотекстолита толщиной 1 мм. Транзисторный каскад VT1R9R10R11 изначально отсутствовал и появился лишь в ходе доработки. Под него место на плате не предусматривалось, поэтому каскад собран навесным монтажом.

Все постоянные резисторы - МЛТ-0,125, подстроечные - СПЗ-276. Конденсаторы С1, С2, С4 - КМ-6 (или К10-17, К10-23), конденсаторы СЗ, С5, С6 - К50-35. Микроамперметром РА1 служит указатель уровня записи от магнитофона «Электроника-321» (сопротивление рамки 530 Ом, ток полного отклонения стрелки - 160 мкА).

Трансформатор Т1 намотан на магнитопроводе Ш5Х6 (использован выходной или согласующий трансформатор от карманных приемников), первичная обмотка содержит 200 витков провода ПЭЛ 0,15, вторичная - 450 витков такого же провода. Потребуются только Ш-образные пластины. Их при сборке смазывают эпоксидным клеем, после высыхания клея торцы пакета выравнивают бархатным напильником. Трансформатор вклеивают изнутри в прямоугольное отверстие в коробке прибора так, чтобы рабочие торцы магнитопровода выступали за пределы коробки на 1…3 мм.

Таймер КР1006ВИ1 можно заменить на LM555, а стабилизатор КР1157ЕН502А - на 78L05, КР142ЕН5А (L7805V). Лучше использовать 78S05, который изготавливается в маленьком корпусе, имеет меньшую выходную мощность, но ведь большой и не надо. В качестве диференциального усилителя DA1, используется микросхема KIA LM386-1.

Для налаживания устройства устанавливают движок резистора R7 в среднее положение. Трансформатор рабочим торцом магнитопровода прикладывают к плоской чистой поверхности стального листа и резистором R5 переводят стрелку на конечное деление шкалы микроамперметра РА1. После этого, прокладывая между трансформатором и металлической поверхностью листы бумаги толщиной 0,1 мм (плотностью 80 г/м2), калибруют прибор. Это обыкновенная «офисная» бумага формата А4, продающаяся в стандартных пачках и где только не используемая. Для калибровки прибора, его корпус аккуратно разбирают, подкладывают под стрелку миллиметровку, на которой в ходе калибровки помечают значения показаний. После этого, в графическом редакторе рисуют шкалу, которую отпечатав на цветном принтере приклеивают внутри прибора, после чего прибор собирают.

Резистор R8 подбирают так, чтобы со свежей батареей питания при нажатии на обе кнопки SB1 и SB2 стрелка микроамперметра отклонялась до конечного деления шкалы. Подключив к прибору разряженную до 7 В батарею, повторяют измерение на шкале микроамперметра и делают отметку, соответствующую разряженной батарее. Можно и по другому — подключите последовательно «Кроне» обыкновенную пальчиковую батарейку, изменив полярность на противоположную. К разнице показаний с пальчиковой батарейкой и без неё, добавьте ещё четверть, это и будет предельное значение разряда. Не забудьте отобразить это значение на шкале. Я поделил норму, от разряженного состояния двумя цветами — зелёным и красным участком шкалы.

P.S. : При пользовании прибором в условиях низкой температуры окружающей среды целесообразно держать его во внутреннем кармане одежды, вынимая непосредственно перед измерением.
В своем измерителе за отсутствием меньшего, я использовал трансформатор с сердечником Ш8Х8, а увеличение массы магнитопровода, повлекло необходимость снижения частоты генератора. Для этого я увеличил номинал С1 до 47 нФ. Прибор показал превосходную работоспособность.

Не используйте для калибровки прибора материалы из сплавов металлов. Я сначала использовал плоскость штангенциркуля, а он, хоть и железный, но содержит примеси немагнитных металлов, на которые прибор вообще не реагирует.

Необходимость в толщиномере лакокрасочных покрытий (ЛКП) особо ощутима при покупке автомобиля с пробегом. Только им можно выявить достоверно места крашенных или шпаклеванных деталей. При этом неоднородность слоя краски является сигнализирующим фактором.

Можно взять во временное пользование профессиональный измеритель ЛКП, но его придется вскоре возвращать. А покупка подержанной машины может растянуться на несколько месяцев.

Измеритель толщины работает следующим образом:

  1. Проводится калибровка. Поскольку разные автомобили имеют различную толщину краски, то процедура калибровки в начале работы необходима. К тому же после калибровки температурные изменения меньше влияют на точность результатов. Выполняется просто, прикладывается датчик к чистой окрашенной поверхности и нажимается кнопка «калибровка». Данные о толщине покрытия, выраженные в условных единицах, записываются в EEPROM (програмно перезаписываемую память).

  1. Выполняется измерение, горит зеленый светодиод . Зеленый светодиод горит, когда отклонение измеренной толщины от записанной незначительно, «норма». Для выполнения измерения, прибор прикладывается к подозрительным и потенциально подверженным ударам и коррозии местам, нажимается кнопка «измерение».
  1. Загорается один из белых светодиодов - небольшое отклонение слоя краски от записанной величины, «подозрительно».
  1. Загорается один из синих светодиодов - затерты следы царапин или есть второй слой краски, «шлифовано» или «краска».
  1. Загорается один из красных светодиодов - толщина покрытия близка к нулю или превышает в 0.2 раза записанное значение, «металл» или «шпаклевка».

При нажатии на кнопку «измерение» замеры толщины проводятся 3 раза, а потом вычисляется среднее значение. Можно получать результат мгновенно, задав проведение измерения всего один раз.

Датчиком прибора является катушка индуктивности, устройством для вычисления величины индуктивности служит плата Arduino.

Толщиномер с индикацией на светодиодах получается компактным. Для установки LCD модуля понабилось бы изготовить громоздкий корпус.

Необходимые детали:

  1. Маленькая и удобная плата Arduino nano.
  2. Кусок паечной макетной платы.
  3. Две маленькие тактовые кнопки.
  4. Батарея питания «Крона».
  5. Два красных светодиода.
  6. Два синих светодиода.
  7. Два белых светодиода.
  8. Один зеленый светодиод.
  9. Резисторы 1 кОм - 10 штук.
  10. Выпрямительный диод IN4007 или другой малой мощности, небольшого размера.
  11. Конденсатор неполярный 100 нФ.
  12. Катушка индуктивности - 100 витков проволоки 0,1 мм. кв. на ферритовом сердечнике d=8 мм.

Сложности могут возникнуть при изготовлении катушки. Необходимо найти одну чашечку ферритового броневого сердечника. На конической части шариковой ручки разместить две картонные щечки на нужном расстоянии друг от друга, чтобы - так получится импровизированный каркас самодельной катушки. Берем обмоточный провод минимальной толщины, около 0.1 мм, чтобы необходимое количество витков из него поместилось внутри сердечника. Намотав около 100 витков на шариковую ручку, снимаем одну из щечек временного каркаса, и надавливая на другой картонный кружок, заталкиваем получившуюся катушку внутрь ферритовой чашки. Выпавшие витки заправляем на сердечник пинцетом. Капнув суперклеем на витки, фиксируем их, и закрываем катушку подходящим картонным кружком. Готовая катушка закрепляется на плате термоклеем.

От того, насколько качественно изготовлена катушка, будет зависеть точность измерителя толщины.

Конденсатор следует подобрать с минимальным ТКЕ (температурным коэффициентом емкости). Рекомендуется найти металлопленочный неполярный конденсатор, у керамических элементов ТКЕ достигает недопустимых значений.

После сборки всех деталей получается такая конструкция.

Здесь реализована идея сборки простейшего прибора с минимумом навесных деталей.

Принцип работы устройства в следующем:

  • Реализована схема, определяющая резонансную частоту LC-контура.

На измерительную катушку и конденсатор (LC-контур) подается калиброванный сигнал, аппроксимированно синусоидальный, после чего работает счетчик, пока сиглал в контуре не затухнет до уровня «0» - срабатывания компаратора Arduino nano.

  • Отсчитанное счетчиком время пропорционально резонансной частоте LC-контура.

Текст программы:

Вывод: предложенная схема дает возможность собрать профессиональное устройство высокой точности, для этого нужно качественно собрать катушку, выбрать неполярный конденсатор с минимальным ТКЕ, подключить экранный модуль LCD, вставить формулу перерасчета значений счетчика в микрометры.