Трансформатор Тесла своими руками – простейшая схема. Сделай своими руками трансформатор Тесла (Tesla coil) Мощная катушка тесла схема на 220в

В 1891 г. Никола Тесла разработал трансформатор (катушку) при помощи которого он ставил эксперименты с электрическими разрядами высоких напряжений. Разработанное Теслой устройство состояло из блока питания, конденсатора, первичной и вторичной катушек, установленных так, что пики напряжения чередуются между ними, и двух электродов, разведенных друг от друга на расстояние. Устройство получило имя своего изобретателя.
Принципы, открытые Тесла при помощи этого устройства, используется сейчас в различных областях, начиная от ускорителей частиц, заканчивая телевизорами и игрушками.

Трансформатор Тесла может быть сделал своими руками. Данная статья посвящена рассмотрению этого вопроса.

Сначала необходимо определиться с размером трансформатора. Можно построить большой прибор, если позволяет бюджет. Следует помнить, что это устройство генерирует разряды высокого напряжения (создают микромолнии), которые нагревают и расширяют окружающий воздух (создают микрогром). Создаваемые электрические поля могут вывести из строя другие электрические приборы. Поэтому строить и запускать трансформатор Тесла не стоит дома; безопаснее делать это в удаленных местах, например, в гараже или сарае.

Величина трансформатора будет зависеть от расстояния между электродами (от величины возникающей искры), которое в свою очередь будет зависеть от потребляемой мощности.

Составные части и сборка схемы трансформатора Тесла

  1. Нам понадобится трансформатор или генератор с напряжением 5-15 кВ и силой тока 30-100 миллиампер. Эксперимент не удастся, если эти параметры будут не соблюдены.
  2. Источник тока нужно подключить к конденсатору. Важен параметр емкости конденсатора, т.е. способность удерживать электрический заряд. Единица измерения емкости – фарад – Ф. Он определяется как 1 ампер-секунда (или кулон) на 1 вольт. Как правило, емкость измеряется в мелких единицах – мкФ (одна миллионная доля фарада) или пФ (одна триллионная доля фарада). Для напряжения 5 кВ конденсатор должен иметь номинал 2200 пФ.
  3. Еще лучше соединить несколько конденсаторов последовательно. В этом случае каждый конденсатор будет удерживать часть заряда, общий удерживаемый заряд увеличится кратно.

  4. Конденсатор(ы) подключается к искровику — промежуток воздуха, между контактами которого происходит электрический пробой. Для того, чтобы контакты выдерживали тепло, выделяемое искрой во время разряда, необходимый их диаметр должен быть 6 мм. минимум. Искровик необходим для возбуждения резонансных колебаний в контуре.
  5. Первичная катушка. Делается из толстого медного провода или трубки диаметром 2,5-6 мм., который закручивается в спираль в одной плоскости в количестве 4-6 витков
  6. Первичная катушка подключается к разряднику. Конденсатор и первичная катушка должны образовывать первичный контур, попадающий в резонанс с вторичной катушкой.
  7. Первичная катушка должны быть хорошо изолирована от вторичной.
  8. Вторичная катушка. Делается из тонкой эмалированной медной проволоки (до 0,6 мм). Проволока наматывается на полимерную трубку с пустым сердечником. Высота трубки должна составлять 5-6 ее диаметров. На трубку следует аккуратно намотать 1000 витков. Вторичная катушка может быть помещена внутрь первичной катушки.
  9. Вторичную катушку одним концом обязательно заземляют отдельно от других приборов. Лучше всего заземление непосредственно «в землю». Второй провод вторичной катушки подключается к тору (излучателю молний).
  10. Тор можно сделать из обыкновенной вентиляционной гофры. Он размещается над вторичной катушкой.
  11. Вторичная катушка и тор образуют вторичный контур.
  12. Включаем питающий генератор (трансформатор). Трансформатор Тесла работает.

Отличное видео с объяснением принципов работы трансформатора Теслы

Меры предосторожности

Будьте осторожны: напряжение, накапливаемое в трансформаторе Тесла, очень велико и при пробоях ведет к гарантированной смерти. Сила тока также очень большая, гораздо превосходящая величину, безопасную для жизни.

Практического применения трансформатора Тесла нет. Это экспериментальная установка, подтверждающая наши знания о физике электричества.

С эстетической же точки зрения, эффекты, которые порождает трансформатор Тесла, удивительны и красивы. Они во многом зависят от того, насколько правильно он собран, достаточной ли силы ток, правильно ли резонируют контуры. Эффекты могут включать в себя свечение или разряды, образуемые на второй катушке, а могут – полноценные молнии, пробивающие воздух из тора. Возникающие свечения смещены в ультрафиолетовый диапазон спектра.

Вокруг трансформатора Тесла формируется высокочастотное поле. Поэтому, например, при помещении в это поле энергосберегающей лампочки, она начинает светиться. Это же поле приводит к образования большого количества озона.

Работа кинескопных телевизоров, люминесцентных и энергосберегающих лампочек, дистанционная зарядка аккумуляторов обеспечивается специальным устройством - трансформатором (катушкой) Тесла. Для создания эффектных световых зарядов фиолетового цвета, напоминающих молнию, также применяется катушка Тесла. Схема на 220 В позволяет понять устройство этого прибора и при необходимости сделать его своими руками.

Механизм работы

Катушка Тесла представляет собой электроаппарат, способный в несколько раз увеличивать напряжение и токовую частоту. Во время её работы образуется магнитное поле, которое может влиять на электротехнику и состояние человека. Попадающие в воздух разряды способствуют выделению озона. Конструкция трансформатора состоит из следующих элементов:

  • Первичной катушки. Имеет в среднем 5−7 витков провода с диаметром сечения не меньше 6 мм².
  • Вторичной катушки. Состоит из 70−100 витков диэлектрика с диаметром не более 0,3 мм.
  • Конденсатора.
  • Разрядника.
  • Излучателя искрового свечения.

Трансформатор, созданный и запатентованный Николой Тесла в 1896 году, не имеет ферросплавов, которые в других аналогичных приборах используются для сердечников. Мощность катушки ограничивается электрической прочностью воздуха и не зависит от мощности источника напряжения.

При попадании напряжения на первичный контур на нём генерируются высокочастотные колебания. Благодаря им на вторичной катушке возникают резонансные колебания, результатом которых является электрический ток, характеризующийся большим напряжением и высокой частотой. Прохождение этого тока через воздух приводит к возникновению стримера - фиолетового разряда, напоминающего молнию.

Колебания контуров, возникающие в процессе работы катушки Тесла, могут быть сгенерированы разными способами. Чаще всего это происходит с помощью разрядника, лампы или транзистора. Наиболее мощными являются устройства, в которых используются генераторы двойного резонанса.

Исходные материалы

Человеку, обладающему основными знаниями в области физики и электрики, собрать трансформатор Тесла своими руками не составит труда. Необходимо лишь приготовить набор основных деталей:

Обязательным элементом первичной катушки является охлаждающий радиатор, размер которого напрямую влияет на эффективность охлаждения оборудования. В качестве обмотки может быть использована трубка из меди или провод диаметром 5−10 мм.

Вторичная катушка требует обязательной изоляции в виде обработки краской, лаком или другим диэлектриком. Дополнительной деталью этого контура является последовательно подключённый терминал. Его использование целесообразно только при мощных разрядах, при небольших стримерах достаточно вывести конец обмотки вверх на 0,5−5 см.

Схема подключения

Трансформатор Тесла собирается и подключается в соответствии с электрической схемой. Монтаж маломощного устройства следует проводить в несколько этапов:

Сборка более мощного трансформатора происходит по аналогичной схеме. Чтобы добиться большой мощности, потребуется :

Максимальная мощность, которую может достигать правильно собранный трансформатор Тесла, доходит до 4,5 кВт. Такой показатель может быть достигнут с помощью уравнивания частот обоих контуров.

Собранную своими руками катушку Тесла обязательно необходимо проверить. Во время проверочного подключения следует:

  1. Установить переменный резистор в среднюю позицию.
  2. Отследить наличие разряда. При его отсутствии нужно поднести к катушке люминесцентную лампу или лампу накаливания. Её свечение будет свидетельствовать о наличии электромагнитного поля и о работоспособности трансформатора. Также исправность прибора можно определить по самостоятельно зажигающимся радиолампам и вспышкам на конце излучателя.

Первый запуск прибора должен осуществляться при отслеживании температуры. При сильном нагревании требуется подключить дополнительное охлаждение.

Применение трансформатора

Катушка может создавать разные виды зарядов. Чаще всего при её работе возникает заряд в форме дуги.

Свечение воздушных ионов в электрическом поле с повышенным напряжением называют коронным разрядом. Он представляет собой голубоватое излучение, образующееся вокруг деталей катушки, имеющих значительную кривизну поверхности.

Искровой разряд или спарк проходит от терминала трансформатора до поверхности земли либо до заземлённого предмета в виде пучка быстро меняющих форму и гаснущих ярких полос.

Стример выглядит как тонкий слабо светящийся световой канал, имеющий множество разветвлений и состоящий из свободных электронов и ионизированных частиц газа, не уходящих в землю, а протекающих по воздуху.

Создание разного рода электроразрядов при помощи катушки Тесла происходит при большом увеличении тока и энергии, вызывающем треск. Расширение каналов некоторых разрядов провоцирует увеличение давления и образование ударной волны. Совокупность ударных волн по звуку напоминает треск искр при горении пламени.

Эффект от трансформатора такого рода ранее использовали в медицине для лечения заболеваний. Высокочастотный ток, протекая по коже человека, давал оздоровительный и тонизирующий эффект. Он оказывался полезным только при условии невысокой мощности. При возрастании мощности до больших значений получался обратный результат, негативно влияющий на организм.

С помощью такого электроприбора разжигают газоразрядные лампы и обнаруживают течь в вакуумном пространстве. Также его успешно применяют в военной сфере с целью быстрого уничтожения электрооборудования на кораблях, танках или в зданиях. Мощный импульс, генерируемый катушкой за очень короткий период, выводит из строя микросхемы, транзисторы и прочие аппараты, находящиеся в радиусе десятков метров. Процесс уничтожения техники происходит бесшумно.

Самой зрелищной сферой применения являются показательные световые шоу . Все эффекты создаются благодаря формированию мощных воздушных зарядов, длина которых измеряется несколькими метрами. Это свойство позволяет широко применять трансформатор при съёмках фильмов и создании компьютерных игр.

При разработке этого устройства Никола Тесла планировал использовать его для передачи энергии в глобальном масштабе. Идея учёного базировалась на применении двух сильных трансформаторов, располагающихся на разных концах Земли и функционирующих с равной резонансной частотой.

В случае успешного использования такой системы энергопередачи необходимость в электростанциях, медных кабелях и поставщиках электричества полностью бы отпала. Каждый житель планеты смог бы использовать электроэнергию в любом месте абсолютно безвозмездно. Однако в силу экономической нерентабельности замысел знаменитого физика до сих пор не был (и вряд ли когда-то будет) реализован.

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух - образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:


После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

  1. Увеличить диаметры катушек и сечение провода в 1,1 – 2,5 раза.
  2. Добавить терминал в форме тороида.
  3. Поменять источник постоянного напряжения на переменный с высоким повышающим коэффициентом, выдающим напряжение 3–5 кВ.
  4. Изменить первичный контур согласно схеме на рисунке 6.
  5. Добавить надёжное заземление.

Искровые трансформаторы Тесла могут достигать мощности до 4,5 кВт, следовательно, создавать стримеры больших размеров. Наилучший эффект получается при достижении одинаковых показателей частоты обоих контуров. Реализовать это можно расчётом деталей в специальных программах – vsTesla, inca и другие. Скачать одну из русскоязычных программ можно по ссылке: http://ntesla.at.ua/_fr/1/6977608.zip .

Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.

Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.

Принцип катушки Тесла

Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.

Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.

Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.

Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.

Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.

Вторая катушка и C s образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.

Главные свойства катушки Тесла:

  • Частота второго контура.
  • Коэффициент обеих катушек.
  • Добротность.

Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.

Подобие с качелями

Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.

Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.

Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.

Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же .

Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.

Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.

Главные катушки Тесла

Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.

  • Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
  • Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
  • Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
  • Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.

Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).

Главные элементы катушки Тесла

В разных конструкциях основные черты и детали общие.

  • Тороид – имеет 3 опции.Первая – снижение резонанса.
    Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
    Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
    Тороиды можно изготовить из гофры и других материалов.
  • Вторичная катушка – базовая составляющая Тесла.
    Длина в пять раз больше диаметра мотки.
    Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
    Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
    Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства.
  • Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
  • Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
    Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
    Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
    Эти обмотки изготавливают в виде цилиндра, конуса.

  • Заземление – это важная составляющая часть.
    Стримеры бьют в заземление, замыкают ток.
    Будет недостаточное заземление, то стримеры будут ударять в катушку.

Катушки подключены к питанию через землю.

Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».

Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.

Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.

Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.

Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.

Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.

Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.

Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.

Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.

Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.

Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.

Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.

Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.

Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.

  • Два провода скрепляются, оголенные концы были повернуты в сторону.
  • Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
  • Подключается питание катушке Тесла своими руками.
  • Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
  • Заземление второй катушки.

Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.

Безопасность

Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мерах защиты.

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка Тесла

Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.

Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.

Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Первый в данной публикации видеоролик канала E-Station.

Наиболее простой для сборки вариант трансформатора тесла, его не сложно собрать своими руками

Схема простейшая, все элементы и радиодетали доступные. Объяснение ясное и доходчивое даже для начинающих радиолюбителей. Все радиодетали и даже сам генератор Тесла можно купить в этом китайском магазине .

В этом видео канала “VLAD YOUTUBER” ведущий показал простейшее устройство, которое собрал своими руками. Называется трансформатор или катушка тесла на транзисторе irfp460. Рассмотрим поближе. Сбоку имеется два выключателя. Один отвечает за охлаждение, то есть включение кулера, чтобы он охлаждал транзистор. 2 выключатель кнопка пуска. Разъем на 220 вольт. Подсоединение прерывателя. С другой стороны имеется кулер от компьютера intel. Радиатор к нему.

С противоположной стороны устройства нарисованная схема и детали, которые в неё входят.

Прерыватель подсоединяется к катушке, собрано на таймерах 555. Прерыватель имеет три регулятора, отвечающие за скважности, частоты и длительности импульса. Пуско включает трансформатор без прерывателя. Разряды будут идти непрерывно. Когда включаем охлаждения, слышал, как заработал кулер.

Простой, и при этом, мощный трансформатор тесла

Youtube канал “Своими руками!”. В этом видео рассказано, как сделать простой сетевой трансформатор Тесла. Другое название качер Бровина. Перед тем, как начнем, чем в первую очередь нужно обзавестись. Понадобится деталь – дроссель от люминесцентных ламп. Встречается редко в продаже. Стоит недешево. В районе 500 руб. Такие дроссели практически не используются. Но вместе с корпусами ламп выбрасываются на улицу, поэтому при желании можно найти. Сопротивление составляет 40 ом. Можно также воспользоваться первичной обмоткой трансформатора. Замерить сопротивление первичной обмотки. Она должна составлять не менее 15 м. Это не удобно, так как трансформатор массивный и в небольшую коробочку всё это не вместится. Даже в маленькую коробочку удалось разместить три таких дросселя.

Перейдем к схеме питания трансформатора. Здесь вход 220 вольт. Дали 3 дросселя от люминесцентных ламп, включенных параллельно. Каждый из них имеет сопротивление 40 ом. В целом примерно 15 Ом идет ограничение входного тока. По другой линии ультрабыстрый диод. Это может быть любой с током 10 ампер. Конденсатор пленочный 1 микрофарад 400 вольт. Что касается дроссели. Они в основном служат в качестве резисторов. Можно их заменить первичкой какого-нибудь сетевого трансформатора, но обязательно смотрите, чтобы сопротивление было у первичной обмотки не менее 15 м. Иначе будет сильный перегрев и вероятность пробоины. Далее, блокинг-генератор на биполярном транзисторе с изолированным затвором. Очень мощный транзистор. Его можно заменить полевым мосфетом. Но тот в свою очередь рассчитан на напряжение 400 вольт с током коллектор-эмиттер 20 ампер. Данные же мощный транзистор показывает гораздо лучшие результаты и греется значительно меньше.

Это уже сам трансформатор. Первичная обмотка 3-5 витков проводом 1,5 до 3 миллиметра. Все обмотки мотаются в одну сторону. Если не заработал, поменяйте местами провода первичной обмотки. Лучше всего использовать медную трубу. Вторичная обмотка приблизительно 1500 витков провода 0,2 – 0,5 мм. Два резистора мощностью 2 ватт, 1,5 и 2,4 КОм. Ограничитель напряжения, защищающий igbt транзистор от пробоя. Можно вместо этой детали использовать два стабилитрона на 12 вольт, включенных встречно друг другу. Прекрасно подходят советские.