Зарядное устройство для шуруповерта 14 4 схема. Зарядное устройство аккумулятора шуруповерта

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы "Интерскол".

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил .

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE , которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки "Пуск" микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки "Пуск" напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки "Пуск" разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD . Маркировка термовыключателя JJD-45 2A . Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки "Пуск" электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому "эффекту памяти" у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV . На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за "эффекта памяти". При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством , например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 "Пуск" начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он "звонился" как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на "пробой" можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор "Сеть" (зелёный). Вынимаем АКБ и делаем "контрольный" замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у

Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.

Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.

Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)

Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.

Режимы заряда

Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.

Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).

Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.

ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).

При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):

Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.

Зарядное устройство + (Видео)

Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.

Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).

Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).

Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!

Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.

Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.

  • Вскрыть корпус старого зарядного устройства.
  • Удалить из него всю бывшую начинку.
  • Подобрать следующие радиоэлементы:
  • Выбрать подходящий размер для печатной платы, помещающейся в корпус вместе с деталями из приведенной схемы, нарисовать нитрокраской ее дорожки по принципиальной схеме, протравить в медном купоросе и распаять все детали. Радиатор для транзистора нужно установить на алюминиевой пластинке так, чтобы она не касалась ни с какой частью схемы. Сам транзистор плотно прикручивается к ней винтиком и гайкой М3.
  • Собрать плату в корпусе и припаять клеммы по схеме строго соблюдая полярность. Вывести провод для трансформатора.
  • Трансформатор с предохранителем на 0.5 А установить в небольшой подходящий корпус и снабдить отдельным разъемом для подключения переделанного зарядного блока. Лучше всего взять разъемы от компьютерных блоков питания, папу установить в корпус с трансформатором, а маму подключить к диодам мостика в зарядном устройстве.

Собранное устройство будет работать надежно если вы аккуратно и тщательно проделали

Шуруповерт – незаменимый инструмент, но обнаруженный недостаток заставляет подумать о том, чтобы внести кое-какие доработки и улучшить схему его зарядного устройства. Оставив шуруповерт зарядиться на ночь, автор этого видео блогер AKA KASYAN наутро обнаружил нагрев акб непонятного происхождения. Притом нагрев был достаточно серьезным. Это не нормально и резко сокращает срок службы аккумулятора. К тому же опасно с точки зрения пожаробезопасности.

Разобрав зарядное устройство, стало ясно, что внутри простейшая схема из трансформатора и выпрямителя. В док-станции всё было еще хуже. Индикаторный светодиод и небольшая схема на одном транзисторе, которая отвечает только за срабатывание индикатора, когда в док-станцию вставлен акб.
Никаких узлов контроля заряда и автоотключения, только блок питания, который будет заряжать бесконечно долго, пока последний не выйдет из строя.

Поиск информации по проблеме привел к выводу, что почти у всех бюджетных шуруповёртов точно такая же система заряда. И лишь у дорогих приборов процессор на управлением реализована умные системы заряда и защит как на самом заряднике, так и в аккумуляторе. Согласитесь, это ненормально. Возможно, по мнению автора ролика, производители специально используют такую систему для того чтобы аккумуляторы быстро выходили из строя. Рыночная экономика, конвейер дураков, маркетинговая тактика и прочие умные и непонятные слова.

Давайте доработаем это устройство, добавив систему стабилизации напряжения и ограничения тока заряда. Аккумулятор на 18 вольт, никель-кадмиевый с емкостью в 1200 миллиампер часов. Эффективный ток заряда для такого акб не более 120 миллиампер. Заряжаться будет долго, но зато безопасно.

Давайте сначала разберемся, что нам даст такая доработка. Зная напряжение заряженного аккумулятора, мы выставим на выходе зарядника именно это напряжение. И когда аккумулятор будет заряжен до нужного уровня, ток заряда снизится до 0. Процесс прекратится, а стабилизация тока позволит заряжать аккумулятор максимальным током не более 120 миллиампер независимо от того, насколько разряжен последний. Иными словами мы автоматизируем процесс заряда, а также добавим индикаторный светодиод, который будет гореть в процессе заряда и погаснет в конце процесса.

Все нужные радиодетали можно приобрести дешево – в этом китайском магазине .
Схема узла. Схема такого узла очень проста и легко реализуема. Затраты всего на 1 доллар. Две микросхемы lm317. Первая включена по схеме стабилизатора тока, вторая стабилизирует выходное напряжение.

Итак, мы знаем, что по схеме будет протекать ток около 120 миллиампер. Это не очень большой ток, поэтому на микросхему не нужно устанавливать теплоотвод. Работает такая система достаточно просто. Во время зарядки образуется падение напряжения на резисторе r1, которого хватит для того, чтобы высвечивался светодиод и по мере заряда ток в цепи будет падать. После некоторой величины падения напряжения на транзисторе будет недостаточное светодиод попросту потухнет. Резистор r2 задает максимальный ток. Его желательно взять на 0,5 ватт. Хотя можно и на 0,25 ватт. По данной ссылке можно скачать программу для расчёта микросхемы.




Данный резистор имеет сопротивление около 10 ом, что соответствует зарядному тока 120 миллиампер. Вторая часть представляет из себя пороговый узел. Он стабилизирует напряжение; выходное напряжение задается путем подбора резисторов r3, r4. Для наиболее точной настройки делитель можно заменить на многооборотный резистор на 10 килоом.
Напряжение на выходе не переделанного зарядного устройства составляло около 26 вольт, при том, что проверка осуществлялась при 3 ваттный нагрузки. Аккумулятор, как уже выше было сказано, на 18 вольт. Внутри 15 никель-кадмиевых банок на 1,2 вольта. Напряжение полностью заряженного аккумулятора составляет около 20,5 вольт. То есть на выходе нашего узла нам нужно выставить напряжение в пределах 21 вольта.


Теперь проверим собранный блок. Как видно, даже при закороченном выходе ток не будет более 130 миллиампер. И это независимо от напряжения на входе, то есть ограничение тока работает как надо. Монтируем собранную плату в док-станцию. В качестве индикатора окончания заряда поставим родной светодиод док-станции, а с транзистором больше не нужна.
Выходное напряжение тоже в пределах установленного. Теперь можно подключить аккумулятор. Светодиод загорелся, пошла зарядка, будем дожидаться завершения процесса. В итоге можно с уверенностью сказать что мы однозначно улучшили эту зарядку. Аккумулятор не нагревается, а главное его можно заряжать сколько угодно, поскольку устройство автоматически отключается, когда аккумулятор будет полностью заряжен.

Содержание:

Все шуруповерты, работающие от аккумуляторов комплектуются зарядными устройствами. Однако некоторые из них очень медленно выполняют зарядку аккумулятора, что при интенсивном использовании инструмента создает определенные неудобства. В этом случае даже два аккумулятора, входящие в комплект, не позволяют настроить нормальный рабочий цикл. Наилучшим выходом из подобной ситуации будет зарядное для шуруповерта, изготовленное своими руками, по наиболее подходящей схеме.

Устройство шуруповерта

Несмотря на разнообразие моделей, общее устройство шуруповертов довольно универсальное, а принцип действия практически одинаковый. Они могут различаться только внешним видом, компоновкой отдельных деталей, наличием или отсутствием дополнительных функций.

Питание шуруповертов может быть сетевым от напряжения 220В или аккумуляторным. Общая конструкция шуруповерта включает следующие элементы и составляющие:

  • Корпус. Изготавливается из твердых пластмасс, что способствует облегчению конструкции и снижению себестоимости. В некоторых моделях применяются металлические сплавы, придающие конструкции повышенную прочность. Представляет собой пистолет с удобной рукояткой, при разборке разделяется на две половинки.
  • Патрон. В нем закрепляются насадки, которым затем передается вращательное движение. Обычно используется трехкулачковое, самозажимное и самоцентрирующееся устройство. Внутри имеется шестигранное углубление, куда вставляется хвостовик насадки. Для закрепления в патроне насадки вставляются между кулачками и зажимаются вращением муфты.
  • Электрическая часть. Состоит из малогабаритного электрического . В устройствах, работающих от сети используются двухфазные двигатели переменного тока, рассчитанные на 220В. Их запуск осуществляется с помощью пускового конденсатора. В аккумуляторных шуруповертах устанавливаются электродвигатели постоянного тока. Постоянный ток поступает от аккумулятора, выполненного в виде набора элементов, объединенных в общем корпусе. Мощность шуруповерта определяется по выходному напряжению батареи.
  • Элементы цепи. Для включения используется специальная кнопка, расположенная на рукоятке. Обычно кнопочные выключатели работают в паре с регуляторами напряжения. То есть, величина напряжения, подаваемого на двигатель, зависит от усилия, прилагаемого при нажатии кнопки. Здесь же устанавливается и рычаг переключения, обеспечивающий реверс вращения вала за счет изменения полярности электрического сигнала. От кнопки сигнал поступает непосредственно на ротор через коллектор. Электрический контакт обеспечивается графитными щетками определенных размеров.
  • Механические части и детали. Основой конструкции является редуктор планетарного типа, с помощью которого крутящий момент передается от вала к выходному шпинделю. В качестве дополнительных элементов используются водило, кольцевая шестерня и сателлиты. Все детали находятся внутри корпуса и по очереди взаимодействуют друг с другом.

Важной составной частью считается муфта регулировки вращения, устанавливающая определенный крутящий момент. С ее помощью прекращается вращение вала после вкручивания шурупа. Остановка происходит из-за увеличения сопротивления вращению. Данная мера предотвращает срыв резьбовой части шурупа и выход из строя самого шуруповерта.

Схемы зарядных устройств для шуруповертов

В одних и тех же шуруповертах могут использоваться различные типы аккумуляторов, отличающихся параметрами и техническими характеристиками. В связи с этим, к ним требуются разные зарядные устройства. Поэтому перед тем как приобрести или сделать зарядник для шуруповерта своими руками, нужно определить тип батареи и условия эксплуатации. Кроме того, рекомендуется изучить основные схемы, чаще всего используемые в зарядных устройствах.

Зарядка на микроконтроллере. Размещается в обычном корпусе, оборудована звуковой и световой сигнализацией о начале и окончании заряда. Данная схема обеспечивает корректную зарядку батареи. В начале работы загораются а затем гаснут светодиоды. Индикация сопровождается звуковым сигналом. Таким образом выполняется тестирование работоспособности устройства. После этого светодиод красного цвета начинает равномерно мигать, что указывает на нормальный процесс зарядки.

По достижении аккумулятором полного заряда, красный светодиод перестает мигать, а вместо него загорается зеленый, сопровождающийся звуковым сигналом. Это означает, что зарядка окончена.

Установка уровня напряжения, который должен быть при полной зарядке, осуществляется с помощью переменного резистора. При этом значение входного напряжения равно напряжению полностью заряженной батареи плюс один вольт. В схеме используется любой , имеющий Р-канал и наиболее подходящий по токовым характеристикам.

Для того чтобы обеспечить зарядку на уровне 14В, напряжение, подаваемое на вход должно составлять не менее 15-16В. Порог срабатывания, отключающий зарядное устройство, устанавливается с помощью переменного резистора на уровне 14,4В. Сам процесс зарядки протекает в виде импульсов, отображаемых на светодиоде. В промежутках между импульсами контролируется напряжение на батарее и по достижении нужного значения происходит подача звукового сигнала совместно с миганием светодиода об окончании зарядки.

Существуют и другие схемы зарядных устройств. Например, зарядка для дрели-шуруповерта работает с напряжением 18 вольт. При зарядке батареи на 14,4В зарядный ток подбирается с помощью резистора.

Зарядка для шуруповерта своими руками

Проблема собственноручного изготовления зарядного устройства возникает не так уж и часто, в связи с большим количеством вариантов, подходящих практически для всех моделей шуруповертов. Просто иногда возникают ситуации, когда зарядка отсутствует, или она неожиданно вышла из строя, а приобрести новую нет возможности. В этом случае можно попытаться самостоятельно изготовить зарядное устройство.

Предварительно следует запастись всеми необходимыми материалами. Потребуется батарея в нерабочем состоянии, стакан от аккумулятора, паяльник, термопистолет, обычная крестовая отвертка, дрель и острый нож со сменными лезвиями. После этого можно приступать к изготовлению зарядного устройства. В первую очередь выполняется вскрытие зарядного стакана, после этого от клемм отпаиваются все проводники. Далее производится удаление внутренней электроники. При выполнении этой операции нужно соблюдать полярность клемм, чтобы в дальнейшем не возникло путаницы и ошибок.

Корпус нерабочей батареи нужно вскрыть и аккуратно отпаять провода от клемм. Для дальнейшей работы потребуется разъем и верхняя крышка. Плюс и минус на клеммах отмечаются карандашом или маркером. В основании зарядного стакана намечаются отверстия, через которые будет крепиться заготовленная крышка и выводы питающих проводов. Проводники аккуратно пропускаются через отверстия с соблюдением полярности, после чего они соединяются с клеммами и разъемами методом пайки.

Далее корпус нужно скрепить специальным термоклеем, крепление нижней крышки к основанию стакана осуществляется с помощью саморезов. Получившуюся конструкцию нужно вставить в аккумулятор и начинать процесс зарядки. Мигающий индикатор будет указывать на правильную сборку устройства. Лишь немногие зарядники укомплектованы так называемыми умными системами, существенно продлевающими срок эксплуатации батареи. Эту проблему может решить зарядное устройство для шуруповерта 18 вольт.

В конструкцию обычной зарядки добавляется система стабилизации напряжения и ограничение заряжающего тока. В итоге получается конструкция никель-кадмиевого аккумулятора, емкость которого составляет 1200 мАч. Зарядка будет выполняться в безопасном режиме, максимальным током не выше 120 мА, но времени для этого будет затрачиваться больше, чем обычно.

Ручной инструмент с источниками автономного питания быстро и успешно развивается. Одно из важнейших направлений — усовершенствование аккумуляторных батарей и их обслуживание. Залогом долговременный и качественной работы аккумуляторных источников питания является зарядное устройство. Сейчас на рынке множество фирм, которые производят собственный инструмент с независимым питанием и блоки для их зарядки. Одним из популярных брендов ручного инструмента является фирма «Интерскол». Совместно с источниками питания фирма производит «собственные» зарядные устройства для аккумулятора шуруповерта интерскол.
Работу зарядного устройства рассмотрим в этой статье. Но, прежде нужно понять принцип устройства блока питания.

Принцип работы блока

Принцип работы аккумуляторной батареи состоит в том, что при зарядке под действием приложенного напряжения происходит внедрение заряженных электронов от анода в активную часть удержания заряда — катод. После полного насыщения активного элемента электронами зарядка завершается. При подключении нагрузки, движение электронов совершается в обратном порядке, при этом на электродах создается разность потенциалов, или напряжение, обозначаемое латинской буквой — U В (Вольт). Количество заряженных электронов в активном слое катода определяется как емкость батареи.

Емкость является одной из самых важных параметров, которая напрямую дает понятие мощности. Физическая величина — мощность, обозначается Р (Ватт), которая определяется умножением напряжения на ток. Так, если, на 12В сборке стоит обозначение 2 Ампер-час(А/ч) — это значит, что 12 вольтовой аккумулятор может отдавать 2 ампера в течении часа при стабильном напряжении.
Мощность батареи подсчитывается по формуле Р= I*U и будет равняться Р=2*12=24Вт (А*ч). Но если вольтаж изменится до 18В, тогда мощность Р (Вт). будет равняться 36 Вт.


Разновидность аккумуляторных сборок

Блок питания состоит из одиночных элементарных частей стандартного размера, собранных последовательно, параллельно или по смешанной схеме. В настоящее время используются никель-кадмиевые (Ni — Ca), никель — металл гидридные (Ni-MН) и литий — ионные (Li — ion) элементарные источники. Эти батарейки собираются в единый блок, они могут быть круглыми, квадратными, или плоскими. В зависимости от активного компонента каждая батарейка изготавливается вольтажем от 1,2 до 3,6В. Для повышения напряжения соединяются последовательно, для повышения емкости (мощности) в параллельное, применяется и смешанное соединение. Так, например, чтобы набрать вольтаж 12В необходимо соединить последовательно 12 элементов по 1В. А чтобы удвоить мощность надо эти же элементы соединить паралельно.

Первые сборки

Самые первые сборки были собраны из элементарных батареек с кадмиево — никелевым активным компонентом. Сборки с (Ni — Ca) обладали рядом исключительных свойств: не боялись работы на морозе; цикличность зарядки доходила до 300 циклов. Батарея могла храниться в работоспособном состоянии много лет. Но, наряду с достоинствами у них есть существенный недостаток — это «эффект памяти», другими словами, сборку нельзя было оставлять в заряженном состоянии т.к. активный металл — кадмий, под действием заряженных электронов, окислялся, батарея уменьшала свою первоначальную емкость. И, хотя, в паспортах изготовителя были рекомендации по правильной эксплуатации, многие пользователи их не выполняли, в результате подготовка аккумулятора для хранения (разряд после каждой работы должен оставаться не боле 30-40%) не выполнялась и аккумуляторы не выдерживали своего гарантийного срока эксплуатации.

Никель — металл гидридные батареи

Следующим шагом в развитии автономных источников питания стали аккумуляторы с никель — металл гидридным (Ni-MH) активным компонентом. Производители позиционировали изделие как лишённого основного недостатка (Са -Ni) «эффекта памяти». Но, после применения на практике выяснилось, что основной недостаток снизился незначительно, а новый активный слой приобрел дополнительные отрицательные свойства: он не мог работать при отрицательных температурах, а стоимость оказалась значительно дороже. Поэтому от производства этих элементов очень быстро отказались, Тем более, что был разработан и предложен на рынок новый активный компонент — литий-ион.

Литий — ионные батареи

Литий-ионные (Li — ion) изделия оказались не слишком дорогими, но по сравнению с предыдущими приобрели несколько существенных преимуществ:

  • цикл разряд — заряд увеличен с 300 до 400;
  • снижен саморазряд;
  • почти полностью устранен эффект памяти.
  • снижено время полного заряда до одного часа.

Но, нежелательных свойств, всё-таки избежать не удалось — это неконтролируемый нагрев до большой температуры при перенапряжении. Если в устройстве, где применяют батареи возможно небольшое перенапряжение, в элементах возможно внутреннее короткое замыкание и активный слой сильно разогреется. Особенно это касалось изделий с небольшой мощностью 12В. Чтобы снизить эти недостатки компания «интерскол» разработала зарядные устройства способные анализировать не только процесс зарядки, но и отдельно каждый элемент.

Внимание! для каждого типа аккумуляторов необходим отдельные зарядные устройства.

Конструкция зарядных устройств

Самое простым по схемному решению может быть подключение аккумуляторов шуруповерта интерскол 12 вольт для Ni — Ca батарей. Станция собрана из самых необходимых элементов для понижения, выпрямления и стабилизации тока. Рассмотрим подробнее работу элементов. Вторичная обмотка трансформатора рассчитана на напряжение 15 — 17 В и ток не менее 5А. Пониженное напряжение на выходе вторичной обмотки выпрямляются диодной сборкой либо диодным мостом собранных из отдельных диодов мощностью не менее 1А. Для сглаживания пульсаций стоит электролитический конденсатор на 100 мкФ. Для индикации используется светодиод, который устанавливается в коллекторную цепь транзистора и открывается при подаче напряжения на базу через сопротивление R2 после замыкания цепи зарядки. Необходимый вольтаж в 12В обеспечивает стабилитрон VD1.Такая схема обеспечивает полную зарядку батареи за 4-5 часов.

Улучшенная схема зарядного устройства шуруповерта интерскол CDQ-F06K1

со стабилизацией тока зарядки компания «Интерскол» разработана на микросхеме HCF4060BE. Микросхема является 14 разрядном задающим генератором при помощи которого происходит управление биполярным транзистором S9012. Нагрузка транзистора является реле S3-12A. Введение в схему счётчика позволяет работать схеме как таймер, который включает реле на заданное время, тем самым, позволяя установить режимы зарядного устройства 12в.

Рассмотрим работу схемы при подключении к сети реле JDQK1. Питание микросхема получает от стабилитрона ВД 6 12В — этот стабилитрон устанавливает установочное напряжение 12В, после чего питание поступает на 16 вывод микросхемы. После подачи питания на микросхему токовые импульсы поступают на базу транзистора S9012 открывая его.

Транзистор открывается и напряжение попадает на контакты реле JDQK1, контакты которого замыкается и ток заряда поступает на блок зарядки. Вентиль VD5 установлен для защиты аккумулятора от обратной разрядки если отключится сетевое питание. Трансформатор применен в схеме, мощностью 25 — 30 ВТ, после вторичной обмотки перед выпрямительным диодным мостом установлен плавкий предохранитель на 5 А. Подобная схема позволяет подключать сеть, не беспокоясь об отключении и контроля за нагрузкой. Индикация красного светодиода указывает на зарядку, зеленого на прекращение зарядки.

Внимание! Перед постановкой Са -Ni аккумуляторов на станцию необходимо произвести разрядку батареи не менее 70% ее полной емкости.


Станция Интерскол для Са -Ni сборок 12В ДА-10/12ЭР

Данное устройство представляет собой небольшую коробку с гнездом для установки батареи. питание от сети 220В. Длина шнура 2,5 м. Имеется индикатор зарядки. Ориентировочная цена изделия 1000руб. Нагрузочный резистор для разрядки батареи до нужного напряжения (5 В) отсутствует. Вес 1,2 кг. Имеется индикация красного цвета — зарядка. Зеленый цвет указывает на полную зарядку батареи.

Особенности зарядных блоков Интерскол и устранение неисправности

Одной из отличительных особенностей зарядных блоков Интерскол является отсутствие сетевого предохранителя и применение в схеме понижающего трансформатора термопредохранителя. Если найти возникшие неисправности электронных элементов в схеме составляет некоторые трудности, то одну из неисправности, связанную с темопредохранителем можно устранить своими силами. Речь идёт о понижающем трансформаторе. Дело в том, что вместо сетевого предохранителя на вход первичной обмотки устанавливается термопредохранитель, который настроен на температуру 130°С

Где купить зарядное устройство для шуруповерта интескол

Что касается вопросам приобретения ручного инструмента или зарядных устройств любой конструкции, то из можно приобрести в специализированных или дилерских центрах фирмы.