3 расчет токов короткого замыкания. Расчет токов короткого замыкания (пример)

Короткое замыкание происходит, когда токоведущие части различных потенциалов или фаз, соединяются между собой. Замыкание может образоваться и на корпусе оборудования, имеющем связь с землей. Данное явление характерно также для электрических сетей и электрических приемников.

Причины и действие тока короткого замыкания

Причины возникновения короткого замыкания могут быть самыми различными. Этому способствует влажная или агрессивная среда, в которой значительно ухудшается . Замыкание может стать результатом механических воздействий или ошибок персонала во время ремонта и обслуживания.

Суть явления заключается в его названии и представляет собой укорачивание пути, по которому проходит ток. В результате, ток протекает мимо нагрузки, обладающей сопротивлением. Одновременно, происходит его увеличение до недопустимых пределов, если не сработает защитное отключение.

Однако, отключение напряжения может не случиться даже если присутствуют защитные средства. Такая ситуация складывается, когда место короткого замыкания сильно удалено и значительное сопротивление делает ток недостаточным для срабатывания защитных устройств. Тем не менее, этого тока вполне хватает для возгорания проводов и возникновения пожара.

В таких ситуациях большое значение имеют так называемые времятоковые характеристики, свойственные автоматическим выключателям. Здесь большую роль играет отсечка тока и тепловые расцепители, защищающие от перегрузок. У этих систем совершенно разное время срабатывания, поэтому, медленное действие тепловой защиты может привести к образованию горящей дуги и повреждению проводников, расположенных рядом.

Токи короткого замыкания оказывают на аппаратуру и электроустановки электродинамическое и термическое воздействие, что в конечном итоге, приводит к их значительной деформации и перегреву. В связи с этим, необходимо заранее производить расчеты токов короткого замыкания.

Как рассчитать ток короткого замыкания по формуле

Расчет данных токов, как правило, производится в случае необходимости проверки работы оборудования в экстремальных ситуациях. Основной целью является определение пригодности защитных автоматических устройств. Для того, чтобы правильно рассчитать ток короткого замыкания прежде всего, необходимо точно знать металл, из которого изготовлен проводник. Для расчетов также потребуется длина провода и его сечение.

Для определения удельного сопротивления необходимо знать показатель активного сопротивления Rп, значение которого состоит из удельного сопротивления провода, умножаемого на его длину. Значение индуктивного сопротивления Хп рассчитывается по показателю удельного индуктивного сопротивления, принимаемого, как 0,6 Ом/км.

Показатель Zt является полным сопротивлением фазной обмотки, установленной в трансформаторе со стороны низкого напряжения. Таким образом, своевременные предварительные расчеты помогут избежать серьезных повреждений электрооборудования, вызванных коротким замыканием.

Расчеты дают возможность точно определить, какой автоматический выключатель обеспечит наиболее эффективную защиту от замыканий. Однако, все необходимые измерения можно произвести с помощью специального прибора, который как раз и предназначен для определения этих величин. Для проведения замера, прибор подключается к сети и переводится в необходимый режим.

Защита сети от короткого замыкания

Ток короткого замыкания – это резко возрастающий электрический импульс, в результате которого выделяется значительное количество тепла. Обычно ток КЗ возникает в аварийной электроустановке или системе, наиболее частая причина его появления – это повреждение изоляции проводников.

После пикового возрастания электроимпульса возможны нарушения в подаче энергии, кроме того выход из строя части потребителей электроэнергии. Для того чтобы избежать этого, необходимо проектировать передающие сети с резервом на возникновение такой ситуации, кроме того периодически проводить контроль на предполагаемые пиковые нагрузки.

Причины возникновения

Основной причиной возникновения аварийной ситуации, связанной с пиковым возрастанием импульса, служит повреждение изоляции проводов. Повреждение может быть вызвано как механическим путём, так и в результате воздействия следующих факторов:

  • электрический пробой вследствие излишне мощной нагрузки;
  • перехлест неизолированных проводников или их соединение;
  • попадание в провода животных или птиц;
  • человеческий фактор;
  • износ оборудования или изоляции вследствие выработки ресурса или естественный.

Для того чтобы свести к минимуму возможности возникновения КЗ в электросети, достаточно своевременно производить проверку изоляции, контролировать ресурс и естественный износ оборудования. Кроме того, снижению риска возникновения КЗ способствует наличие автоматической защиты устройств, включённых в систему электропитания, а также точное соблюдение правил монтажа и эксплуатации электросетей.

Принцип действия

До момента возникновения короткого замыкания ток имеет равное нормальному значение. Но в условиях соединения проводников его величина резко возрастает из-за значительного уменьшения общего сопротивления сети. После чего параметры вновь снижаются до стабильного значения. При этом распределение импульса можно кратко описать так.

Итак, короткое замыкание формула:

I к.з.=Uph / (Zn + Zt), где:

  • I к.з. – величина тока короткого замыкания,
  • Uph – фазное напряжение,
  • Zn – суммарное сопротивление замкнутой сети,
  • Zt – суммарное сопротивление источника.

Фактически процесс возникновения и процесс протекания можно описать так:

  1. Величина тока стабильна, сеть обладает активным и индуктивным сопротивлением, которое ограничивает возможность резкого роста величины;
  2. При перехлёсте проводов и возникновении явления КЗ параметры сети остаются прежними, величина ТКЗ по-прежнему стабильна и равно нормальной;
  3. Переходный момент – с момента возникновения явления до восстановления установившегося режима. Расчет тока КЗ можно провести на любом отрезке этого процесса. Сила тока короткого замыкания в этот момент нестабильна, как и его напряжение.

Возникает закономерный вопрос, как рассчитать ток короткого замыкания. В переходном процессе ТКЗ рассчитывается, исходя из его элементов, в их наибольших значениях. Апериодический ток после возникновения снижается по экспоненциальной зависимости, до нулевой величины. Периодический – постоянен.

Ударный ток короткого замыкания – это максимально возможное значение тока КЗ, в момент до затухания апериодической составляющей он определяется по формуле:

I у – i пm + i аt=0, где:

  • I у – ударный ток КЗ,
  • i пm– амплитуда периодического тока,
  • i аt – величина апериодического.

Важно! Расчет ТКЗ – достаточно сложное и ответственное занятие, проектирование энергосистемы стоит доверить профессионалам.

Виды короткого замыкания

Фактически короткое замыкание – это непредусмотренное условиями эксплуатации соединение токоведущей линии с другой фазой или нейтралью, в результате чего возникает электрическая дуга, и выделяется значительное количество тепла. Это и является основной опасностью КЗ в быту.

В зависимости от типа сети подразделяют следующие виды:

  • трехфазное – перемыкание или соединение трех фаз;
  • двухфазное – перехлест двух фаз токоведущей системы;
  • однофазное на землю;
  • однофазное на нейтраль – перехлест фазы на землю, в качестве которой выступает изолированная нейтраль;
  • двух,- и трехфазное на землю – соединение двух или более токоведущих линий с проводом заземления.

В зависимости от вероятности возникновения, расчёт тока КЗ, его силы и напряжения производится индивидуально. Возникновение аварийной ситуации предполагается при проектировании, и в энергосистему закладываются устройства автоматической защиты и прерывания.

Сопротивление сети и закон Ома

Сопротивление сети играет важную роль, протяжённость провода может достигать значительных значений, а чем выше протяжённость, тем больше сопротивление. Оно также оказывает влияние на величину тока короткого замыкания. На эту величину влияет общее суммарное сопротивление всего участка сети до источника тока.

Расчёт основан на принципе определения силы тока по его напряжению. Этот же принцип работает при определении наиболее оптимальных нагрузок на сеть. Нагрузки в нормально работающей сети стабильны и постоянны, но в аварийной ситуации процесс протекает в неконтролируемом режиме. Несмотря на это, его основные пиковые параметры вполне поддаются расчётам.

Использование явления короткого замыкания

Помимо негативного эффекта, к которому приводит короткое замыкание в аварийных и неконтролируемых ситуациях, это явление может использоваться и в полезных целях. Нужно отметить, что в результате КЗ выделяется значительное количество тепла, и возникает электрическая дуга, контролируемое использование которой может принести немалую пользу.

Так, например, электродуговой сварочный аппарат. Принципом его работы является создание электрической дуги между электродом и поверхностью детали, в результате чего в зоне её работы повышается температура, и металл сваривается между собой. Действие в этом случае основано на явлении КЗ электрода и земли.

Стоит отметить! Величина тока и температура, создаваемая на месте сварки, достаточно велики, поэтому при работе с подобного рода оборудованием требуется соблюдать все необходимые меры предосторожности.

Аварийная защита от КЗ

Существует достаточно много устройств, обеспечивающих безопасность потребителя при коротком замыкании, в основе своей эти устройства отключают аварийный участок сети:

  • плавкие предохранители различных типов;
  • электрические автоматы;
  • дифференциальные автоматические устройства защиты;
  • токоограничители.

Наиболее простым, но в тоже время эффективным способом защиты от возникновения короткого замыкания служит включение в электросеть плавких предохранителей. При повышенной нагрузке нить таких предохранителей плавится и перегорает, тем самым обрывая от источника повреждённый участок сети.

Но, помимо высокой эффективности, эти устройства обладают рядом недостатков. В первую очередь, это необходимость их постоянной замены и работа только при определенных нагрузках. При дефиците таких предохранителей их зачастую заменяли «жучками», которые могли служить проводником тока, но не выполняли функции предохранителей, что, в свою очередь, могло привести к печальным последствиям.

Также достаточно эффективным и надёжным средством обеспечения безопасности служат автоматические выключатели, также известные как электрические автоматы. Принцип их действия основан на использовании тепловых реле. При нагреве пластины сверх нормы они расширяются и отключают автомат, для включения сети достаточно просто включить его обратно. Эти устройства более удобны, чем плавкие предохранители, более эффективны в работе.

Дифференциальные автоматы отключают ток даже при небольших изменениях параметров тока на подключённом к ним участке, эти устройства наиболее эффективны и безопасны, но в тоже время достаточно дорого стоят.

Токоограничивающий реактор применяется в сетях высокого напряжения, использование этих устройств, рассчитанных на промышленные нагрузки, в быту нерационально. Практически это катушка, последовательно включённая в токоведущую сеть. При коротком замыкании реактор принимает энергию на себя. В настоящее время применяются токоограничители различных конструкций.

Важно! Использование «жучков» вместо плавких предохранителей может грозить выходом из строя электрооборудования, а также пожаром!

Мощность источника питания

Исходя из этого параметра сети, можно оценить разрушительную работу при аварийной ситуации. Рассчитываются время протекания КЗ, пиковые величины и размер.

Для примера достаточно рассмотреть медный провод, подключённый к бортовой сети автомашины, и такой же отрезок провода, смонтированный в бытовой электросети напряжением 220V. Если в автомобиле из строя выйдут предохранители, или сгорит аккумулятор, при их отсутствии, то в бытовой сети просто отключится электроэнергия из-за перегрева автомата, но если, как и предохранители в автомашине, он вышел из строя, провод просто сгорит. Ситуация, что ток КЗ воздействует на источник питания маловероятна, так как протяжённость проводов, а, значит, и сопротивление сети достаточно большие, и ТКЗ просто не дойдёт до трансформатора.

Расчёт тока короткого замыкания производится несколькими различными методиками, они позволят определить все необходимые параметры с нужной точностью. Кроме того, можно измерить сопротивление схемы по способу «фаза-ноль», расчёт с использованием этого параметра делает расчет токов короткого замыкания более точным и позволяет откорректировать безопасные значения и необходимые устройства при проектировании электросети. В настоящее время существуют онлайн-калькуляторы для расчета параметров и величин КЗ. Рассчитывать параметры ТКЗ и систему безопасности через них довольно удобно и быстро.

Видео

В данной статье речь пойдет о коротком замыкании в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, и т. п.

Далее рассмотрим ток трехфазного короткого замыкания при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток короткого замыкания во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн - номинальный ток в амперах, Iкз - ток короткого замыкания в амперах, Uкз - напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.


Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей принебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

На рисунке ниже приведено пояснение для данного примера.

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Здесь: U2 - напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт - полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, - имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Pкз - мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети - Rа - очень мала, и сравнительно с индуктивным сопротивлением - ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.



Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток короткого замыкания в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток короткого замыкания на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

ГЛАВА СЕДЬМАЯ

РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

7.1. Короткое замыкание в симметричной трехфазной цепи промышленного предприятия

Определение токов КЗ зависит от требований к точности результа­тов, от исходных данных и назначения расчета. В общем случае токи КЗ определяются переходными процессами в электрических цепях, изучаемых теоретическими основами электротехники . Расчет токов КЗ в электрических сетях промышленных предприятий несколько отличается от расчетов, осуществляемых в электрических сетях и си­стемах. Это объясняется возможностью не выделять (не учитывать) турбо - и гидрогенераторы электростанций, подпитку от нескольких источников питания, работу разветвленных сложных кольцевых схем, свойства дальних ЛЭП, действительные коэффициенты трансфор­мации.

Для выбора аппаратов и проводников, для определения воздействия на несущие конструкции при расчете токов КЗ исходят из следующих положений. Все источники, участвующие в питании рассматриваемой точки, работают с номинальной нагрузкой. Синхронные машины имеют автоматические регуляторы напряжения и устройства быстродействующей форсировки возбуждения. Короткое замыкание наступает в такой момент времени, при котором ток КЗ имеет наибольшее значение. Электродвижущие силы всех источников питания совпадают по фазе. Расчетное напряжение каждой ступени принимают на 5% выше номи­нального напряжения сети (средние номинальные напряжения), а имен­но: 515; 340; 230; 154; 115; 37; 24; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,69; 0,525; 0,4; 0,23; О,133 кВ.

Учитывают влияние на токи КЗ присоединенных к данной сети син­хронных компенсаторов, синхронных и асинхронных электродвигате­лей. Влияние асинхронных электродвигателей на токи КЗ не учитывают при единичной мощности электродвигателей до 100 кВт, если электро­двигатели отдалены от места КЗ одной ступенью трансформации, а также при любой мощности, если они отделены от места КЗ двумя или более ступенями трансформации или если ток от них может поступать к месту КЗ только через те элементы, через которые проходит основной ток КЗ от сети и которые имеют существенное сопротивление (линии, трансформаторы и т. п.).

В электроустановках напряжением выше 1 кВ учитывают индуктив­ные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий, токопроводов. Активное сопротивление следует учитывать только для воздушных линий с проводами малых площадей сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

В электроустановках напряжением до 1 кВ учитывают индуктивные и активные сопротивления всех элементов короткозамкнутой цепи (переходные контакты аппаратов, токовые катушки, переходные со­противления, несимметрию фаз и т. д.). При этом следует отметить, что влияние сопротивления энергосистемы на результаты расчета токов КЗ на стороне до 1 кВ невелико. Поэтому в практических расчетах со­противлением на стороне 6-10 кВ часто пренебрегают, считая его рав­ным нулю. В случае питания электрических сетей напряжением до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исхо­дить из условия, что подведенное к трансформатору напряжение не­изменно и равно его номинальному значению.

Требования к расчету токов КЗ для релейной защиты и системной автоматики несколько отличаются от требований к расчету для выбора аппаратов и проводников. Требования к точности расчетов токов КЗ для выбора заземляющих устройств невысоки из-за низкой точности методов определения других параметров, входящих в расчет заземляю­щих устройств (например, удельного сопротивления земли). Поэтому для выбора заземляющих устройств допускается определять значения токов КЗ приближенным способом.

Расчетная схема для определения токов КЗ представляет собой схе­му в однолинейном исполнении, в которую введены генераторы, ком­пенсаторы, синхронные и асинхронные электродвигатели, оказывающие влияние на ток КЗ, а также элементы системы электроснабжения (ли­нии, трансформаторы, реакторы), связывающие источники электро­энергии с местом КЗ. При составлении расчетной схемы для выбора электрических аппаратов и проводников и определения при этом токов КЗ следует исходить из предусматриваемых для данной электроуста­новки условий длительной ее работы. При этом не нужно учитывать кратковременные видоизменения схемы этой электроустановки, напри­мер при переключениях. Ремонтные и послеаварийные режимы работы электроустановки к кратковременным изменениям схемы не относятся. Кроме того, расчетная схема должна учитывать перспективу развития внешних сетей и генерирующих источников, с которыми электрически связывается рассматриваемая установка (не менее чем на 5 лет от за­планированного срока ввода в эксплуатацию).

По расчетной схеме составляют схему замещения, в которой транс­форматорные связи заменяют электрическими. Элементы системы электроснабжения, связывающие источники электроэнергии с местом КЗ, вводят в схему замещения сопротивлениями, а источники энер­гии - сопротивлениями и ЭДС. Сопротивления и ЭДС схемы замеще­ния должны быть приведены к одной ступени напряжения (основная ступень). В практических расчетах за основную удобно принимать ступень, где определяются токи КЗ. Параметры элементов схемы замещения можно выражать в именованных или относительных едини­цах.

При составлении схемы замещения в относительных единицах зна­чения ЭДС и сопротивлений схемы выражают в долях выбранных зна­чений базовых величин. В качестве базовых величин принимаются ба­зовая мощность S б в расчетах обычно S б = 100 MB∙А) и базовое на­пряжение ..gif" width="81" height="48"> 7.1)

Расчетные формулы для определения сопротивления элементов схемы в именованных и в относительных единицах (EN-US">S

ном номинальное напряжение U ном, сверхпереходное индуктивное сопротивление , постоянная времени затухания апериодической составляющей тока трехфазного КЗ . Перечисленные параметры, кроме ЭДС, даются в паспортных данных машины, а в случае отсутствия могут быть взяты из справоч­ных таблиц.

Электродвижущая сила Е " (фазное значение) определяется прибли­женным выражением

где https://pandia.ru/text/79/406/images/image010_27.gif" width="28" height="24">- номинальный ток; j - угол между током и напряжением в доаварийном режиме.

Значения коэффициента k , равного ЭДС Е" в относительных еди­ницах, приведены ниже.

Средние значения и Е" при нормальных условиях, отн. ед.:

Типы машины

Синхронный компенсатор

Синхронный электродвигатель

Асинхронный электродвигатель

Если имеется источник питания, заданный суммарной мощностью генераторов того или иного типа S S и результирующим сопротивле­нием для начального момента времени x с, то такой источник может рассматриваться как эквивалентный генератор с номинальной мощ­ностью S ном S и сверхпроводным сопротивлением x с.

Если источником питания является мощное энергетическое объеди­нение, заданное результирующим сопротивлением x с, током КЗ I к или мощностью , то можно считать, что такое объеди­нение является энергосистемой, удаленной от шин потребителя на сопротивление x с.

Когда необходимые данные об энергосистеме отсутствуют, расчеты производят по предельному току отключения I отк выключателей, установленных на шинах связи с энергосистемой. Ток отключения приравнивается току КЗ I к, и отсюда определяется сопротивле­ние x с.

Определение сопротивлений системы в именованных и в относитель­ных единицах:

(7.4)

где https://pandia.ru/text/79/406/images/image016_14.gif" width="28" height="24"> - мощность отключения выключателя по каталогу, установлен­ного на присоединении подстанции предприятия к системе; https://pandia.ru/text/79/406/images/image018_10.gif" width="25" height="25 src=">.

Электродвигатели напряжением выше 1 кВ рассматриваются анало­гично генераторам. Сверхпереходная ЭДС Е" определяется как E " = kU ном. Коэффициент k соответствует Е " и берется из таблицы.

Сверхпереходное сопротивление в паспорте электродвигателя в отличие от генераторов не указывается и определяется по кратности его пускового тока:

где - номинальный ток двигателя; - кратность пускового тока к номинальному.

Сопротивление синхронных и асинхронных двигателей в именован­ных и относительных единицах

(7.5)

Обобщенной нагрузкой принято называть смешанную нагрузку, состоящую из нагрузок на освещение, питание электродвигателей, пе­чей, выпрямителей и т. п. Средние расчетные параметры такой нагруз­ки даны в таблице и отнесены к среднему номинальному напряжению ступени трансформации в месте подключения нагрузки и полной мощ­ности нагрузки (MB∙А). Определение сопротивления обобщенной на­грузки производится аналогично (7.5).

К расчетным паспортным параметрам двухобмоточного трансформа­тора (рис. 7.1, а, б) относят: номинальную мощность , номинальное напряжение обмоток https://pandia.ru/text/79/406/images/image024_6.gif" width="41 height=24" height="24"> потери КЗ P к или отношение х/r . Сопротивления

(7.6)

Рис 7.1. Двухобмоточный трансформатор и его схема замещения (а , б ); трехобмоточный трансформатор (в , г ); двухобмоточный трансформатор с расщеп­ленной обмоткой низшего напряжения (д , е )

Поясним параметр . Между обмотками трансформатора имеется только магнитная связь. Эквивалентное электрическое сопротивление первичной и вторичной обмоток трансформатора определяется из опы­та КЗ, состоящего в следующем: вторичная обмотка трансформатора закорачивается, после чего трансформатор нагружается номинальным током, затем на выводах первичной обмотки производятся замеры па­дения напряжения ∆U и потерь КЗ P к в трансформаторе.

По данным опыта вычисляется напряжение КЗ как относительное падение напряжения в сопротивлении трансформатора при прохожде­нии по нему номинального тока:

где z т - эквивалентное электрическое сопротивление обмоток транс­форматора. Следовательно, соответствует сопротивлению транс­форматора в относительных единицах при номинальных условиях.

Индуктивное сопротивление трансформатора с учетом напряжения КЗ u к и потерь короткого замыкания https://pandia.ru/text/79/406/images/image030_5.gif" width="135" height="31">

Поскольку активное сопротивление трансформаторов сравнительно невелико, обычно принимают

Если для вычисления ударного тока КЗ возникает необходимость в определении активного сопротивления трансформатора r т, что ре­комендуется для трансформаторов мощностью 630 кВ∙А и менее, то это можно сделать на основании потерь P к, взятых из каталога, или по кривым х /r :

(7.7)

Для расчета трехобмоточных трансформаторов (рис. 7.1, в, г) долж­ны быть даны: номинальная мощность ; номинальные напряжения обмоток https://pandia.ru/text/79/406/images/image034_5.gif" width="157" height="24">потери КЗ P к или отношение х /r . Номи­нальной мощностью трехобмоточного трансформатора является номинальная мощность наиболее мощной его обмотки; к этой мощности приводятся относительные сопротивления трансформатора и потери КЗ.

Чтобы определить напряжения КЗ, опыт проводится 3 раза - между обмотками В-С, В-Н и С-Н, причем каждый раз третья обмотка, не участвующая в опыте, остается разомкнутой. Из постановки опыта КЗ очевидно, что напряжение КЗ между обмотками можно выразить в виде суммы напряжений КЗ этих обмоток, например

Относительные базисные сопротивления определяются для каждой ветви схемы замещения:

(7.8)

Значения в именованных единицах определяются аналогично пер­вой формуле (7.6).

Потерями КЗ трехобмоточного трансформатора называются мак­симальные из возможных в трансформаторе потерь https://pandia.ru/text/79/406/images/image038_4.gif" width="36" height="24 src="> указываются в каталоге на трансформатор.

К расчетным параметрам (рис. 7.1, д , е ) относят: номинальную мощ­ность обмотки высшего напряжения https://pandia.ru/text/79/406/images/image040_4.gif" width="64" height="27"> (мощность = 0,5); номинальные напряжения обмоток ; напряжения КЗ между обмотками EN-US">P к или отношение х /r .

Выражения для напряжений короткого замыкания каждой обмотки трансформатора аналогичны (7.8) и (7.6):

(7.9)

Определение активных сопротивлений расщепленных трансформа­торов производится аналогично определению этих сопротивлений для трехобмоточных трансформаторов. В отличие от трехобмоточных транс­форматоров в каталогах на расщепленные трансформаторы даются по­тери КЗ для обмоток В-Н1 (Н2) , отнесенные к мощности обмотки низшего напряжения .

Для определения активных сопротивлений трансформатора, если потери КЗ не известны, можно применять кривые х /r .

Расчетными параметрами реактора являются: номинальное индук­тивное сопротивление в омах или относительных единицах x ном или x ном %; м номинальное напряжение U ном; номинальный ток I ном; но­минальные потери ∆Р или отношение х /r .

В случае использования сдвоенных реакторов индуктивное сопротив­ление задается для ветви реактора и помимо перечисленных параметров указывается коэффициент связи между ветвями k св, обычно k св= 0,5 (рис. 7.2).

Сопротивление реактора относительное и приведенное к базовому

(7.10)

где х р - номинальное реактивное сопротивление реактора, Ом, U с - напряжение сети в точке установки реактора и реактора сдвоенного:

(7.11)

Известно, что сдвоенный реактор конструктивно отличается от обыч­ного выводом средней точки обмотки, разделяющим обмотку реактора на две ветви.

Расчет активного сопротивления реакторов производится по номи­нальным потерям или по отношению х /r . При использовании потерь на фазу реактора расчет выполняется таким образом: для одинарных реакторов ; для сдвоенных реакторов

Сопротивления линий электропередачи в расчетных схемах характе­ризуются удельными сопротивлениями на 1 км длины. Индуктивное сопротивление линии зависит от расстояния между проводами и радиуса провода. Сопротивление линии электропередачи в именованных и от­носительных единицах

(7.12)

где x о - среднее сопротивление 1 км линии; l - длина линии.

Рис. 7.2. Сдвоенный реактор (а ) и его схема замещения (б )

В качестве средних расчетных значений индуктивного сопротивления на фазу следует принимать, Ом/км:

Воздушная линия:

330 кВ (два провода на фазу)

Трехжильный кабель:

Одножильный маслонаполненный 110кВ

Активное сопротивление должно учитываться в случаях, если его суммарное значение составляет более одной трети индуктивного сопро­тивления всех элементов схемы замещения до точки КЗ, т. е. когда Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминиевых про­водов подсчитано следующим образом:

где l - длина линий, м; q - сечение провода, м2; g - удельная прово­димость, (МОм∙м) -1, равная для меди g = =53, для алюминия g = 32.

7.2. Вычисление значений токов короткого замыкания в электроустановках свыше 1 кВ

Условиями, характеризующими трехфазное КЗ, являются симмет­ричность схемы и равенство нулю междуфазных и фазных напряжений в месте КЗ:

Таким образом, разность потенциалов цепи короткого замыкания от места подключения генерирующего источника до точки КЗ равня­ется ЭДС данного источника. Это дает возможность определить началь­ное действующее значение периодической слагающей по закону Ома. В случае питания КЗ от энергосистемы расчетное выражение для опре­деления периодической слагающей приобретает вид

(7.14)

где https://pandia.ru/text/79/406/images/image056_2.gif" width="137" height="33">- результирующее сопротивление цепи КЗ; x с - результирующее сопро­тивление (индуктивное) энергосистемы относительно места ее подклю­чения в расчетной схеме; x в, r в - соответственно индуктивное и актив­ное сопротивления от места подключения энергосистемы до точки КЗ.

Без учета активного сопротивления периодический ток

(7.15)

где https://pandia.ru/text/79/406/images/image059_1.gif" width="131" height="28"> (7.16)

где I к - ток в рассматриваемой точке КЗ, приведенный к напряже­нию U ср.

В относительных единицах, если источником питания в расчетной схеме сети является энергосистема, ЭДС системы и напряжение на ее шинах равны: отсюда

Без учета активного сопротивления

(7.18)

При питании КЗ от энергосистемы в результате неизменности на­пряжения на шинах системы амплитуды периодической слагающей то­ка короткого замыкания во времени не изменяются и ее действующее значение в течение всего процесса КЗ также остается неизменным: Определение периодической слагающей в дан­ном случае для любого момента времени КЗ должно производиться по расчетным выражениям (7.14) и (7.15) для вычисления начального значения тока.

При питании КЗ от генератора с автоматическим регулятором воз­буждения (АРВ) или без него амплитуды и действующие значения пе­риодической слагающей в процессе КЗ изменяются по значению. Для практических расчетов периодической слагающей в различные момен­ты КЗ обычно используют графоаналитический метод с применением расчетных кривых, иначе - метод расчетных кривых.

При расчетах токов трехфазного КЗ для выбора аппаратов и провод­ников принято считать, что максимальное мгновенное значение тока КЗ или ударный ток наступает через 0,01 с с момента возникновения короткого замыкания.

Для схем с последовательно включенными элементами ударный ток подсчитывается по выражению

где T a - постоянная времени затухания апериодической составляющей тока КЗ; k уд - ударный коэффициент для времени t = 0,01 с.

Постоянная времени T a определяется выражением

где 0 " style="margin-left:-68.35pt;border-collapse:collapse;border:none">

Трансформаторы мощностью, MB А

РеакторыкВ на ток, А:

1500 и выше

Воздушные линии

Кабели 6-10 кВ сечением 3 XX 185 мм2

Ударный ток синхронного и асинхронного электродвигателей опре­деляется следующим образом:

где k y - ударный коэффициент цепи двигателя. Если сопротивление внешней цепи электродвигателя невелико EN-US">k y берется в готовом виде; если внешнее со­противление подлежит учету, то k y следует определять аналитически. Если расчетная схема в результате преобразования может быть пред­ставлена как две или несколько независимых генерирующих ветвей, ударный ток в месте КЗ определяется как сумма ударных токов этих ветвей.

Действующее значение полного тока КЗ It в произвольный момент времени равно

где I пt - действующее значение периодической слагающей тока КЗ в произвольный момент времени (по расчетным кривым); I аt - дей­ствующее значение апериодической слагающей тока КЗ в тот же мо­мент времени.

Действующее значение тока КЗ за первый период от начала про­цесса определяется по формуле

(7.23)

где k у - ударный коэффициент, определяемый по кривой на рис. 1.3. Во всех случаях, когда не учитывается активное сопротивление цепи КЗ, обычно принимают k у =1,8. Для удаленных точек КЗ с учетом активного сопротивления k у определяется по экспоненциальной за­висимости отношения времени КЗ к постоянной Т а.

Условная мощность КЗ для произвольного момента времени (для выбора выключателя по отключающей способности) определяется по формуле

где U ср - среднее номинальное напряжение сети для точки, в которой рассчитывается ток КЗ.

https://pandia.ru/text/79/406/images/image073_1.gif" width="77" height="29">

Учет подпитки мест короткого замыкания от электродвигателей производится, если двигатели непосредственно связаны с точкой короткого замыкания электрически и находятся в зоне малой удаленности. Токи короткого замыкания от двигателей, отдаленных от точки короткого замыкания ступенью трансформации или через обмотки сдвоенного реактора, как правило, не учитываются.

Если двигатели подключены к точке короткого замыкания кабель­ными линиями длиной не более 300 м, начальное значение периодиче­ской составляющей тока короткого замыкания определяется без учета внешнего сопротивления:

где - сверхпереходная ЭДС (см. § 7.1); I ном - номинальный ток двигателя.

Значение периодической составляющей тока короткого замыкания в момент отключения выключателя:

от асинхронного двигателя

где Т р - расчетная постоянная времени затухания периодической составляющей тока короткого замыкания двигателя; при отсутствии данных можно принять Т = 0,04-0,06 с; от синхронного двигателя

где https://pandia.ru/text/79/406/images/image078_1.gif" width="21" height="24"> равен 0,7 при t =0,1 с и 0,6 при 0,25 с). Если тип двигателя не известен, то значение можно опре­делить по усредненной кривой, как для двигателя серии СДН.

Апериодическая составляющая и ударный ток от двигателей

(7.25)

При отсутствии данных можно принять Т а = 0,04 с для асинхронных двигателей и Т а = 0,06 с для синхронных.

7.3. Короткое замыкание в сетях напряжением до 1 кВ

Расчет токов КЗ в цеховых электрических сетях переменного тока отличается от расчета в сетях 1 кВ и выше. В сетях до 1 кВ наряду с ин­дуктивным учитываются и активные сопротивления элементов цепи КЗ: силовых трансформаторов", кабельных линий, шинопроводов, пер­вичных обмоток многовитковых трансформаторов тока, токовых катушек автоматических выключателей, различных контактных соеди­нений (разъемных и втычных контактов аппаратов и т. д.), дуги в месте КЗ. Общее активное сопротивление цепи КЗ r S может быть больше 30% х S , что влияет на полное сопротивление z S и ток КЗ.

Из-за удаленности места КЗ в сети до 1 кВ от источника питания (x *р > 3) периодическая составляющая сверхпереходного тока ока­зывается равной установившемуся значению тока I ∞, т. е. периодиче­ская составляющая тока КЗ неизменна во времени. Физически это объясняется тем, что КЗ в сети до 1 кВ из-за большого индуктивного сопротивления цехового трансформатора воспринимается в сети 6-10 кВ как небольшое приращение нагрузки, нечувствительное в сети 110 кВ.

Сопротивление системы, отнесенное к ее мощности, состоит из последовательно соединенных элементов: генераторов (x г ³ 0,125), понижающих трансформаторов (x пов. тр ³ 0,105), линий электропере­дачи (x л ³ 005), понижающих трансформаторов районных подстан­ций и (или) ГГШ предприятия (x пон. тр ³ 0,105).

Таким образом, результирующее сопротивление энергосистемы в относительных единицах без цехового трансформатора в общем слу­чае будет не менее 0,4.

При индуктивном сопротивлении цехового трансформатора, отне­сенном к мощности системы,

и суммарном сопротивлении цепи КЗ более 3(x *р > 3) имеем

(7.26)

Если = 1000 кВ∙A, > 5,5, получим S c > 47 MB∙А, что всегда выполнимо для современных систем электроснабжения.

Из анализа соотношения (7.26) очевидно, что суммарное сопротив­ление цепи тока КЗ определяется сопротивлением цехового транс­форматора. Это определяет следующие особенности режимов работы цеховых трансформаторных подстанций ЗУР: 1) параллельная работа двух цеховых трансформаторов практически удваивает мощности КЗ, что повышает требования к устойчивости электрических сетей и коммутационной аппаратуры на стороне до 1 кВ; 2) рост единичной мощности цеховых трансформаторов (применение трансформаторов 1600 и 2500 кВ∙А) ведет к увеличению токов КЗ в сети до 1 кВ и предъявляет более жесткие требования к цеховым сетям с точки зре­ния их устойчивости к действию тока КЗ.

Расчет для отдельных элементов цепи КЗ осуществляется по пас­портным или справочным данным, и ведут его в именованных единицах, выражая сопротивление элементов в миллиомах. Сопротивление шинопроводов и кабельных линий определяют через активные r 0 и индук­тивные х 0 сопротивления фазы (мОм/м), принимаемые по справоч­ным данным.

Полное, активное и индуктивное сопротивления цехового трансфор­матора, приведенные к ступени низшего напряжения, выражаются фор­мулами, мОм,

(7.27)

(7.28)

(7.29)

где https://pandia.ru/text/79/406/images/image083_1.gif" width="40" height="25">.gif" width="39" height="25"> - номинальное напряжение на стороне низкого напряжения трансформатора, кВ.

Переходное сопротивление в сети до 1 кВ можно представить в виде двух составляющих:

где https://pandia.ru/text/79/406/images/image091_0.gif" width="33" height="25"> - сопротивление дуги в месте КЗ. Суммарное сопротивление

где https://pandia.ru/text/79/406/images/image094_0.gif" width="20" height="24 src="> - сопротивление автоматических выключателей, состоящее из сопротивления катушек расцепителей и переходного сопротивления контактов; https://pandia.ru/text/79/406/images/image096_0.gif" width="109" height="25">

где Е д - напряженность электрического поля в месте горения дуги, которую можно принять равной 1,5 В/мм; l д - длина дуги, мм (рав­на удвоенному расстоянию а между фазами сети в месте КЗ); I к - ток трехфазного КЗ.

В практических расчетах можно пользоваться значениями R пер, приведенными в табл. 7.1 для характерной схемы сети до 1 кВ (рис. 7.4).

При аппроксимировании результатов, приведенных в табл. 7.1, по­лучена формула для определения суммарного переходного сопротив­ления при КЗ в точках К2 -К4:

(7.30)

где 0 " style="margin-left:-37.05pt;border-collapse:collapse;border:none">

Мощность, трансформатора, кВ∙А

Значения переходных сопротивлений R пер, мОм, в точках КЗ

K 1

K 2

K 3

K 4

Примечание. В числителе приведены значения сопротив­лений при магистральной схеме, в знаменателе - при радиальной.

Рис. 7.4. Характерная схема цеховой электриче­ской сети для расчета токов КЗ

При расчете токов КЗ в цепь короткого замыкания вводятся также индуктивные сопротивления трансформаторов тока и катушек максимального тока автомати­ческих выключателей, значения которых принимают по справочным или заводским данным.

Вычисление токов короткого замыка­ния осуществляется для выбора и провер­ки токоведущих устройств и аппаратов цеховой сети на устойчивость действию КЗ. Независимо от режима нейтрали в це­ховых сетях наиболее тяжелым режимом является трехфазное КЗ.

Преобразование схемы замещения чаще всего сводится к определе­нию суммарного сопротивления цепи КЗ путем сложения последова­тельно соединенных активных и индуктивных сопротивлений n эле­ментов, так как сети до 1 кВ имеют одностороннее питание:

Ток трехфазного КЗ находится по формуле

Влияние асинхронных двигателей, подключенных непосредственно к месту КЗ, можно ориентировочно учесть увеличением значения I к на 4I вд (I вд - суммарный номинальный ток двигателей). При этом I к увеличивается не более чем на 10%.

Ударный ток трехфазного КЗ определяется по формулам (7.19), (7.25). Значение I к в сетях до 1 кВ меньше, чем в сетях выше 1 кВ, из-за большого активного сопротивления цепи КЗ, которое вызывает быстрое затухание апериодической составляющей тока КЗ. Значение ударного коэффициента можно определить по специальным кривым или расчетом в зависимости от отношения x S / r S или постоянной вре­мени затухания апериодической составляющей Т а = x S / (w r S ).

В приближенных расчетах при определении i у на шинах цеховых ТП мощностью кВ∙А можно принимать k у=1,3, а для более удаленных точек сети k у» 1. Влияние асинхронных двигателей, подклю­ченных непосредственно к месту КЗ, на i у можно ориентировочно учесть увеличением значения найденного i у на (4-7)I дв.

Особую сложность составляет расчет однофазных токов КЗ в сетях до 1 кВ с глухозаземленной нейтралью, когда ток однофазного КЗ может оказаться меньше значений, достаточных для надежного срабаты­вания защиты цеховых сетей (автоматических выключателей или предо­хранителей). В таких сетях ток однофазного замыкания, равный утро­енному току нулевой последовательности, определяется по формуле

где https://pandia.ru/text/79/406/images/image112.gif" width="45" height="24 src="> - суммарные активное и индуктивное сопротивления нулевой последовательности.

Ток однофазного замыкания на землю для надежного срабатывания защиты в установках, не опасных по взрыву, должен не менее чем в 3 раза превышать номинальный ток соответствующей плавкой вставки.

При определении токов КЗ в сетях напряжением до 1 кВ следует учитывать, что цеховые ТП выпускаются комплектными и их оборудо­вание (шкафы высокого и низкого напряжения с установленными в них выключателями, трансформаторами тока, шинами и другими эле­ментами) рассчитано на длительный нормальный режим работы и отве­чает требованиям устойчивости к токам КЗ в сети низкого напряжения трансформатора данной мощности. Если в цеховой электрической сети применяются комплектные магистральные и распределительные шинопроводы, то подбор их по номинальному току позволяет, как правило, удовлетворить и требованиям устойчивости к действию тока КЗ.

Расчет токов КЗ следует выполнять в случаях совместного питания силовых и осветительных нагрузок, если в осветительной сети примене­ны осветительные шинопроводы, питающиеся от распределительных шинопроводов. Динамическая стойкость шинопроводов типа ШОС составляет 5 кА, что значительно ниже стойкости шинопроводов типа ШРА (15-35 кА). Если цеховая электрическая сеть состоит из кабелей или проводов в трубах, то для выбора и проверки аппаратов напря­жением до 1 кВ расчет токов КЗ в таких сетях является обяза­тельным.

Вопросы для самопроверки

1. Назовите особенности упрощения расчетов токов КЗ в промыш­ленных электрических сетях.

2. Рассмотрите рис. 1.1 как расчетную схему и составьте на основании рисунка схему замещения для расчета токов КЗ.

3. Запомните расчетные формулы для определения сопротивления элементов электрической цепи.

4. Укажите преимущественную область использования именованной системы расчетов токов КЗ.

6. Укажите особенности расчетов токов КЗ в сети до 1 кВ.

7. Поясните физический смысл мощности короткого замыкания на разных уровнях системы электроснабжения, действующего и ударного значений токов КЗ.

Электрическая энергия несет в себе довольно высокую опасность, от которой не защищены ни работники отдельных подстанций, ни бытовые приборы. Ток короткого замыкания – это один из самых опасных видов электроэнергии, но существуют методы, как его контролировать, рассчитать и измерить.

Что это такое

Ток короткого замыкания (ТКЗ) – это резко возрастающий ударный электрический импульс. Главной его опасностью является то, что согласно закону Джоуля-Ленца такая энергия имеет очень высокий показатель выделения тепла. В результат короткого замыкания могут расплавиться провода или перегореть определенные электроприборы.

Фото – временная диаграмма

Он состоит из двух основных слагающих – апериодическая составляющая тока и вынужденная периодическая слагаемая.

Формула – периодическая Формула – апериодическая

По принципу, сложнее всего измерить именно энергию апериодического возникновения, которая является емкостной, доаварийной. Ведь именно в момент аварии разница между фазами имеет наибольшую амплитуду. Также его особенностью является не типичность возникновения этого тока в сетях. Схема его образования поможет показать принцип действия этого потока.


Сопротивление источников из-за высокого напряжения при КЗ замыкается на небольшом расстоянии или «накоротко» – поэтому это явление получило такое название. Бывает ток короткого трёхфазного замыкания, двухфазного и однофазного – здесь классификация происходит по количество замкнутых фаз. В некоторых случаях, КЗ может быть замкнут между фазами и на землю. Тогда, чтобы его определить, нужно будет отдельно учитывать заземление.


Фото – результат КЗ

Также можно распределить КЗ по типу подключения электрооборудования:

  1. С заземлением;
  2. Без него.

Для полного объяснения этого явления предлагаем рассмотреть пример. Скажем, есть конкретный потребитель тока, который подключен к локальной линии электропередач при помощи отпайки. При правильной схеме общее напряжение в сети равно разнице ЭДС у источника питания и снижению напряжения в локальных электрических сетях. Исходя из этого, для определения силы тока короткого замыкания может использоваться формула Ома:

R = 0; Iкз = Ɛ/r

Здесь r –сопротивление КЗ.

Если подставить определенные значения, то можно будет определить ток замыкания в любой точке на всей линии электропередач. Здесь не нужно проверять кратность КЗ.

Способы расчета

Предположим, что замыкание уже произошло в трехфазной сети, к примеру, на подстанции или на обмотках трансформатора, как тогда производится расчет токов короткого замыкания:

Формула – ток трехфазного замыкания

Здесь U20 – это напряжение обмоток трансформатора, а Z T – сопротивление определенной фазы (которая была повреждена в КЗ). Если напряжение в сетях – это известный параметр, рассчитывать требуется сопротивление.

Каждый электрический источник, будь-то трансформатор, контакт аккумуляторной батареи, электрические провода – имеет свой номинальный уровень сопротивления. Иными словами, Z у каждого свое. Но они характеризуются сочетанием активных сопротивлений и индуктивных. Также есть емкостные, но они не имеют значение при расчете токов высокой силы. Поэтому многими электриками используется упрощенный способ вычисления этих данных: арифметический расчет сопротивления постоянного тока на последовательно соединенных участках. Когда эти характеристики известны, не составит труда по формуле ниже рассчитать полное сопротивление для участка или целой сети:

Формула полного заземления

Где ε – это ЭДС, а r – величина сопротивления.

Учитывая, что во время перегрузок сопротивление равняется нулю, решение принимает следующий вид:

I = ε/r = 12 / 10 -2

Исходя из этого, сила при коротком замыкании этого аккумулятора равна 1200 Ампер.

Таким образом можно также рассчитать ток КЗ для двигателя, генератора и других установок. Но на производстве не всегда есть возможность рассчитывать допустимые параметры для каждого отдельного электрического устройства. Помимо этого, следует учитывать, что при несимметричных замыканиях нагрузки имеют разную последовательность, для учета которой требуется знать cos φ и сопротивление. Для расчета используется специальная таблица ГОСТ 27514-87, где указываются эти параметры:

Также существует понятие односекундного КЗ, здесь формула силы тока при коротком замыкании определяется при помощи специального коэффициента:

Формула – коэффициент КЗ

Считается, что в зависимости от сечения кабеля, КЗ может пройти незаметно для проводки. Оптимальным является длительность замыкания до 5 секунд. Взято из книги Небрат «Расчет КЗ в сетях»:

Сечение, мм 2 Длительность КЗ, допустимая для конкретного типа проводов
Изоляция ПВХ Полиэтилен
Жилы медь Алюминий Медь Алюминий
1,5 0,17 нет 0,21 нет
2,5 0,3 0,18 0,34 0,2
4 0,4 0,3 0,54 0,36
6 0,7 0,4 0,8 0,5
10 1,1 0,7 1,37 0,9
16 1,8 1,1 2,16 1,4
25 2,8 1,8 3,46 2,2
35 3,9 2,5 4,8 3,09
50 5,2 3 6,5 4,18
70 7,5 5 9,4 6,12
95 10,5 6,9 13,03 8,48
120 13,2 8,7 16,4 10,7
150 16,3 10,6 20,3 13,2
185 20,4 13,4 25,4 16,5
240 26,8 17,5 33,3 21,7

Эта таблица поможет узнать ожидаемую условную длительность КЗ в нормальном режиме работы, амперметраж на шинах и различных типах проводов.

Если рассчитывать данные по формулам нет времени, то используется специальное оборудование. К примеру, большой популярностью у профессиональных электриков пользуется указатель Щ41160 – это измеритель тока короткого замыкания фаза-ноль 380/220В. Цифровой прибор позволяет определить и рассчитать силу КЗ в бытовых и промышленных сетях. Такой измеритель можно купить в специальных электротехнических магазинах. Эта методика хороша, если нужно быстро и точно определить уровень тока петли или отрезка цепи.

Также используется программа «Аврал», которая быстро может определить термическое действие КЗ, показатель потерь и силу тока. Проверка производится в автоматическом режиме, вводятся известные параметры и она сама рассчитывает все данные. Это проект платный, лицензия стоит около тысячи рублей.

Видео: защита электрической сети от короткого замыкания

Защита и указания по выбору оборудования

Несмотря на всю опасность этого явления, все же есть способ, как ограничить или свести к минимуму вероятность возникновения авариных ситуаций. Очень удобно использовать электрический аппарат для ограничения короткого замыкания, это может быть токоограничивающий реактор, который значительно снижает термическое действие высоких электрических импульсов. Но для бытового использования этот вариант не подойдет.


Фото – схема блока защиты от кз

В домашних условиях часто можно встретить использование автомата и релейной защиты. Эти расцепители имеют определенные ограничения (максимальный и минимальный ток сети), при превышении которых отключают питание. Автомат позволяет определять допустимый уровень ампер, что помогает повысить безопасность. Выбор производится среди оборудования с высшим классом защиты, нежели нужно. Например, в сети 21 ампер рекомендуется использовать автомат для отключения 25 А.