Автоматическое зарядное устройство свинцово кислотных акб. Автоматическое зарядное уст-во свинцово-кислотных аккумуляторов

Со временем тратят свой заряд, и его необходимо периодически восстанавливать. Аспекты этого процесса и будут рассмотрены в рамках статьи.

Что называют зарядкой

Так называют процесс, который является обратным разрядке. Во время зарядки свинцово-кислотных герметичных аккумуляторов они запасаются энергией, питаясь при этом от внешнего источника тока. В конечном результате накапливается заряд, что равен емкости. А как выглядят зарядные устройства для герметичных свинцовых кислотных аккумуляторов? Они представляют собой преобразователь энергии и два вывода, каждый из которых подключается к Герметичный необслуживаемый свинцово-кислотный аккумулятор при подключении в сеть начнёт процесс восстановления и превращения электрической энергии (подаваемой из сети) в химическую. Чтобы в последующем, как только возникнет необходимость, он мог проводить обратный процесс и обеспечивать энергоснабжение различных устройств и приборов.

Заряжаем просто и безопасно

Для этого необходимо воспользоваться методом «ток-напряжение». В чем он заключается? Первоначально аккумулятор заряжается постоянным током. Когда необходимые показатели достигаются, начинает идти поддержка постоянного напряжения. Чтобы узнать начальный ток зарядки, обычно достаточно внимательно осмотреть корпус - там указывается данный параметр. Обычно эта величина составляет до 0,3 Чтобы было более понятно, представим, что у нас есть устройство с параметром в 100 А/час. Тогда ток заряда не должен превышать 30А. Но это безопасный максимум, многие производители в своих зарядных устройствах используют правило десяти процентов. Это позволяет заряжать аккумуляторы без наименьшей боязни сделать что-то не так и вывести его из строя. А сколько же нужно заряжать? Если начальный ток равен 20% емкости, то резерв аккумулятора будет восстановлен на 90% примерно за 5-6 часов. На оставшиеся 10% понадобится примерно сутки. Вот такие особенности своего функционирования имеет зарядное для герметичных свинцово-кислотных аккумуляторов. Можно ли как-то ускорить этот процесс? Да, и мы сейчас рассмотрим, как.

Быстрая зарядка свинцово-кислотных герметичных аккумуляторов

Нормой считается зарядка постоянным током при напряжении в 13,8. Больше этого не рекомендуется из-за возможных негативных последствий. Но если они вас не страшат, то можете повысить напряжение к 14,5 В (это для аккумуляторов на 12 В). В результате аккумулятор при 20% показателе зарядится за 6 часов. Применяется такой способ исключительно при работе в циклическом режиме.

Влияние температуры

Всё, что было написано выше, относится только к случаю, когда температура составляет 20 градусов Цельсия. При других показателях необходимо вводить компенсацию зарядного напряжения. Заряжать свинцово-кислотные аккумуляторы можно в диапазоне от -15 до 40 градусов. Чем большая температура, тем меньшим должно быть напряжение для избегания перезарядки. В противоположном случае данный показатель, наоборот, следует увеличить, чтобы избежать недозарядки. Герметичный необслуживаемый свинцово-кислотный аккумулятор из-за этого желательно заряжать именно в условиях 20 градусов Цельсия плюс-минус несколько. Конечно, можно и высчитывать каждый раз, но это не всегда удобно. В качестве идеального места по температурному параметру часто выбирают свои жилища, но тогда необходимо позаботиться о качественном проветривании места зарядки как во время этого процесса, так и через несколько часов после его окончания.

Последствия при несоблюдении техники безопасности

Описанные выше способы нацелены на быструю и безопасную зарядку. При этом ставится задача максимального сохранения ресурса свинцово-кислотного аккумулятора путём минимизации факторов его старения. А теперь давайте осмотрим отклонения. Что будет, если использовать ток больший, чем максимально допустимый? Первоначально следует отметить, что герметичные свинцово-кислотные аккумуляторы не смогут полностью зарядиться. Также из-за уменьшения эффективности механизма рекомбинации газов электролит будет терять воду. Поэтому даже разовой зарядки хватит, чтобы сократить ресурс работы.

А что будет, если уменьшить ток к 0,5 проценту от емкости? Герметичные свинцово-кислотные аккумуляторы зарядятся и в таком случае, но продолжаться данный процесс будет несколько недель. К тому же устройство будет находиться в состоянии, что эквивалентно разряженному. А это приводит к сульфатации и ускоренному старению. Конечно, одной зарядки с малым током недостаточно для серьезных повреждений, но ими лучше не пользоваться. Также необходимо следить и за конечным напряжением, чтобы не произошло недозаряда устройства и уменьшения его ресурса.

А почему свинцово-кислотные аккумуляторы имеют такой диапазон температур для зарядки? Дело в том, что при выходе из них прекращается работа механизма рекомбинации газов, и электролит теряет свою воду.

Всё ли хорошо было сделано

Чтобы получить хороший результат, необходимо соблюдать требуемые параметры в необходимых рамках. Главное место в этом вопросе должны занимать ток и напряжение (учитывайте температуру). Тогда герметичные свинцово-кислотные аккумуляторы будут заряжаться успешно и смогут прослужить длительное время. Если же вокруг есть электролит, белый налёт или пузырьки, то восстановление характеристик устройства было совершено неправильно. Для определения состояния можно использовать тестер. Восстановление герметичных свинцово-кислотных аккумуляторов осуществляется с помощью специальных зарядных устройств (которым может потребоваться несколько суток) или дополнительных механических действий (как-то подлить электролит).

Заключение

Как видите, процесс зарядки свинцово-кислотных аккумуляторов нельзя назвать сложным. При соблюдении техники безопасности непросто будет получить что-то не то. Но напоследок хочется порекомендовать заряжать их в отдельных помещениях, а если устройства восстанавливают в условиях жилого дома, то необходимо позаботиться о качественном проветривании во время процесса, а также нескольких часов после него. Эти меры безопасности необходимы из-за того, что, пускай и в микроскопических дозах, но свинец может попадать в воздух, а через него и в организм, откуда он очень медленно выводится и постоянно оказывает отравляющее воздействие.

Когда требуется зарядить свинцовый аккумулятор средних и малых размеров (не автомобильный), то чаще всего берут обычный блок питания или простой трансформатор с выпрямителем, после чего подключают к нему АКБ часов на 10, подобрав ток 0,1С. Это конечно колхоз. В более-менее приличных устройствах, где начинка "на уровне", требуется схема ЗУ со всеми системами слежения и автоматического управления зарядом. Для этого и предназначена данная схема зарядного устройство на основе чипа BQ24450 от Тексас инструментс. Эта микросхема берет на себя все функции по зарядке аккумулятора и поддержанию стабильности процесса, независимо от условий и состояния АКБ. А широкий диапазон зарядных токов и напряжений делает её подходящей для батарей аварийного освещения, радиоуправляемых автомобилей, мотоциклов, лодок или любого другого транспортного средства с 6 - 12 В батареей - просто подключите это зарядное устройство к аккумулятору и всё.

Характеристики микросхемы BQ24450

  • Вход 10-40 В постоянного тока
  • Ток нагрузки (заряда) 0,025-1 А
  • С внешним транзистором - до 15 А
  • Регулировка напряжения и тока во время зарядки
  • Температурно-компенсированный источник опорного напряжения


Микросхема BQ24450 содержит все необходимые элементы для оптимального контроля зарядки свинцово-кислотных аккумуляторных батарей. Она контролирует зарядный ток, а также напряжение зарядки, чтобы безопасно и эффективно заряжать батарею, увеличивая эффективную ёмкость батареи и срок службы. Встроенный прецизионный источник опорного напряжения с температурной компенсацией для отслеживания характеристик свинцово-кислотных ячеек поддерживает оптимальное напряжение зарядки в расширенном температурном диапазоне без использования каких-либо внешних компонентов.


Низкий ток потребления микросхемы позволяет точно контролировать процесс благодаря малому саморазогреву. Имеются компараторы, которые отслеживают напряжение зарядки и ток. Эти компараторы питаются от внутреннего источника, что положительно сказывается на стабильности цикла зарядки.

Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение - у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво (пока еще) рассудив, что было бы неплохо наломать этих самых дров пока не стемнело. А дров надо было на два костра - для шашлыков и для обогрева - освещения места празднования. Ну что я вам хочу сказать... на следующий день мне с трудом удавалось разогнуться, поскольку для того, чтобы от костра света было достаточно туда надо постоянно подбрасывать дрова, которые надо рубить в лесу, в котором после захода солнца стало темно, как сами знаете где и батареи в фонарях приходилось экономить и освещать место пьянства костром, для которого надо рубить дрова. Я повторяюсь, да? Ну вот той ночью у меня таких повторений было очень много. В связи с чем на следующий день возникло два вопроса - "я отдыхал?" Или "где и как сделать, чтобы такого больше не случалось?"

Прежде всего батареи - ясно, что нужны аккумуляторы, но посмотрев на цены современных никель-кадмиевых аккумуляторов моя жаба категорически отказалась их покупать. Тут я вспомнил про УПС-ы - ну знаете, такие бандуры для того, чтобы ваш комп не вырубился в самый неподходящий момент, когда вы заканчиваете проходить сапера 100х100, а добрый сосед уже подключил самопальный сварочный агрегат в розетку и радостно ухмыльнувшись включил его, обесточивая, таким образом пол-дома.

Так вот, в этих бандурах применяются герметичные свинцовые аккумуляторы - их еще называют гелевыми. По стоимости они не сравнимы с Ni-Cd аккумуляторами - первые стоят значительно меньше последних. Поехал я в магазинчик и прикупил себе вполне даже средненький аккумулятор с напряжением 12 вольт и ёмкостью 7,2 ампер-часа.

Рис.1 Фото аккумулятора.

Далее все было просто - берем 10-ти ваттную автомобильную лампочку, вешаем её на длинном проводе на дерево и подключаем к сабжу - свет готов. А для подключение магнитолы ваяем простенький стабилизатор на КРЕН8А или её буржуйском аналоге LM7809, прикручиваем провода к клемам в батарейном отсеке - e voila - имеем свет и музыку. Должен вам сказать, что подобная схема уже испытывалась - хватает на всю ночь непрерывной работы и аккумулятор до конца не разряжается.

Но вы же понимаете, что все хорошо до конца не бывает - должна быть где то капелька отходов чловеческого метаболизма, которая должна отравить всю идиллию. В данном случае засада в том, что эти аккумуляторы нельзя заряжать обычными зарядными устройствами для автомобильных аккумуляторов. Обычные кислотно-свинцовые аккумуляторы заряжаются постоянным по величине током, при этом напряжение на клеммах все время растет и когда оно достигает определенной величины - электролит в аккумуляторе закипает, что свидетельствуе об окончании заряда. Давайте себе представим, что будет, когда закипит герметичный аккумулятор. Я так полагаю, что жертв и разрушений вряд ли удасться избежать. Посему эти ящики заряжают по-другому: ток заряда устанавливают равным 0,1С, где С - это ёмкость аккумулятора, причем, зарядный ток ограничивают, поскольку этот товарищ "неудовлетворенный желудочно" и готов сожрать все, что ему дают, напряжение стабилизируют и устанавливают в пределах 14-15 вольт. В процессе заряда напряжение остается практически неизменным, а ток будет уменьшаться от установленного, до 20-30мА в самом конце заряда. То есть, нужно было собрать зарядное устройство.

Возиться ужасно не хотелось, но тут выручили буржуи - ST Microelectronics - у них, оказывается есть почти готовое решение - микросхема L200C. Эта микросхема представляет собой стабилизатор напряжения с программируемым ограничителем выходного тока. Документация на эту микросхему лежит тут: www.st.com/stonline/products/literature/ds/1318.pdf Схема зарядного устроства на рисунке 2 - это практически типовая схема включения


Рис.2

Особо описывать в общем то и нечего, остановлюсь только на паре моментов. Прежде всего - токозадающие резисторы R2-R6. Их мощность должна быть не меньше указанной на схеме, а лучше больше. Ну если вы, конечно, не фанат дымовых спецэффектов и не тащитесь от вида почерневших резисторов.


Рис 3.1 Устройство на макетной плате

Микросхему, разумеется, надо установить на радиатор, причем, тоже не жадничать - все это хозяйство расчитано на долговременную работу, поэтому, чем легче будет тепловой режим элементов, тем лучше для них, а значит и для вас. Резистором R7 подстраивается выходное напряжение в пределах 14-15 вольт. Диоды лучше брать наши, отечественные в металлических корпусах, тогда их не надо устанавливать на радиаторы. Напряжение на вторичной обмотке трансформатора 15-16 вольт. Лично я никакой платы не делал, не так уж много тут деталей - собрал все на макетке. Что получилось видно на фотке.


Рис 3.2 Все в сборе, только без корпуса

Работает все, как и предсказано в теории - ток, по началу, большой, к концу заряда опустился до незначительного и в таком состоянии живет уже несколько дней. Кстати, фирма производитель рекомендует как раз такой, незначительный ток в течении длительного времени для сохранения ёмкости батареи.


Рис 4.2 Собранное устройство на плате

Скачать печатную плату в форматах LAY и Corel для плоттерной резки на пленке вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Стабилизатор напряжения L200C 1 В блокнот
VD1-VD5 Диод

Д242

5 1N5400 В блокнот
C1 Электролитический конденсатор 4700 мкФ 25 В 1 В блокнот
C2 Конденсатор 1 мкФ 1 В блокнот
R1 Резистор

820 Ом

1 В блокнот
R2 Резистор

3 Ом

1 0.25 Вт В блокнот
R3 Резистор

0.33 Ом

1 2 Вт В блокнот
R4 Резистор

0.75 Ом

1 1 Вт В блокнот
R5 Резистор

1.5 Ом

1 0.5 Вт В блокнот
R6 Резистор
  • 24.09.2014

    Сенсорный выключатель показанный на рисунке имеет двухконтактный сенсорный элемент, при касании обеих контактов напряжение питания (9В) от источника питания подается в нагрузку, а при следующем касании сенсорных контактов питания отключается от нагрузки, нагрузкой может быть лампа или реле. Сенсор очень экономичен и потребляет малый ток в режиме ожидания. В момент …

  • 08.10.2016

    MAX9710/MAX9711 — стерео/моно УМЗЧ с выходной мозностью 3 Вт имеющие режим пониженного потребления. Технические характеристики: Выходная мощность 3 Вт на нагрузке 3 Ом (при КНИ до 1%) Выходная мощность 2,6 Вт на нагрузке 4 Ом (при КНИ до 1%) Выходная мощность 1,4 Вт на нагрузке 8 Ом (при КНИ до 1%) Коэффициент подавления шумов …

  • 30.09.2014

    Характеристики: Диапазон воспроизводимых частот 88…108 МГц Реальная чувствительность 3 мкВ Выходная мощность УНЧ 2*2Вт Диапазон воспроизводимых частот 40…16000Гц Напряжение питания 3…9В Приемник построен на 2-х микросхемах CXA1238S и TEA2025B. CXA1238S содержит универсальный АМ\ЧМ радиоприемный тракт, выбор режима работы определяет лог. уровень на 15-ом выводе микросхемы. В состав ЧМ входит — …

  • 22.04.2015

    На рисунке № 1 показана схема простого индикатора сетевого напряжения. R1 ограничивает прямой ток через светодиод HL1. С1 используется в качестве балластного элемента, что позволило улучшить тепловой режим уст-ва индикации. При отрицательной полуволне сетевого напряжения стабилитрон VD1 работает как обычный диод, предохраняя светодиод от пробоя в обратным смещением. При положительной …

  • 21.09.2014

    В наше время, когда многие обзавелись дачей или домом в селе, где сварка является необходимостью, возникает проблема с ее приобретением. Покупка заводского аппарата осложняется его высокой стоимостью. Самая трудоемкая часть — изготовление самого сварочного трансформатора. При этом изготовитель сталкивается с проблемой приобретения магнитопровода. К магнитопроводу предъявляют следующие требования: достаточная площадь …

этой статье я расскажу, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.

Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ - его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.
]1. Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
- первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
- второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
- третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.
- четвёртый этап - «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.
2. Режим тренировки (десульфатации) - меню «Тренировка». Здесь осуществляется тренировочный цикл:
10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.
3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.
4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.
Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля - П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.
Значения настроек:
1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию - 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.





Выбор и переделка блока питания.

В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это - практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка». Более подробно о блоках питания можно прочитать, например, здесь, а переделка БП в зарядное устройство неплохо описана вот здесь.
Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме - значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.
Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3.


На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом - чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.

Схема блока управления показана на рис.4.


Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Детали и конструкция.

Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Буззер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – WH1602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр
Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1
все остальные - незапрограммированы (установлены в 1).
Наладка
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.
И в заключение, несколько фото.
Расположение элементов в корпусе блока питания:

Готовая же конструкция может выглядеть так:



так:



или даже так:





АРХИВ:Скачать