Автомобильный датчик тока положительной шины питания. Малогабаритный датчик переменного тока Трансформаторный датчик тока своими руками

Для контроля потребления тока, фиксируйте блокировку моторов или аварийное обесточивание системы.

Работа с высоким напряжением опасна для здоровья!

Касание винтов контактных колодок и их выводов может привести к поражению электрическим током. Не прикасайтесь к плате, если она подключена к бытовой сети. Для готового устройства используйте изолированный корпус.

Если вы не знаете как подключить датчик к электроприбору, работающему от общей сети 220 В или у вас есть сомнения - остановитесь: вы можете устроить пожар или убить себя.

Вы должны чётко понимать принцип работы устройства и опасности работы с высоким напряжением.

Видеообзор

Подключение и настройка

Датчик общается с управляющей электроникой по трём проводам . На выходе сенсора - аналоговый сигнал . При подключении к Arduino или Iskra JS удобно использовать Troyka Shield , а для тех кто хочет избавится от проводов подойдёт Troyka Slot Shield . Для примера подключим шлейф от модуля к группе контактов Troyka Shield, относящихся к аналоговому пину A0 . В своём проекте вы можете использовать любые аналоговые пины.

Примеры работы

Для облегчения работы с датчиком мы написали библиотеку TroykaCurrent , которая переводит значения аналогового выхода датчика в миллиамперы. Скачайте и установите её для повторения описанных ниже экспериментов.

Измерение постоянного тока

Для измерения постоянного тока подключим сенсор в разрыв цепи между светодиодной лентой и питанием. Выведем в Serial-порт текущее значение постоянного тока в миллиамперах.

CurrentDC.ino #include Serial.print ("Current is " ) ; Serial.print (sensorCurrent.readCurrentDC () ) ; Serial.println (" mA" ) ; delay(100 ) ; }

Измерение переменного тока

Для измерения переменного тока подключим датчик в разрыв цепи между источником переменного напряжения и нагрузкой. Выведем в Serial-порт текущее значение переменного тока в миллиамперах.

CurrentAC.ino // библиотека для работы с датчиком тока (Troyka-модуль) #include // создаём объект для работы с датчиком тока // и передаём ему номер пина выходного сигнала ACS712 sensorCurrent(A0) ; void setup() { // открываем последовательный порт Serial.begin (9600 ) ; } void loop() { // вывод показателей сенсора для постоянного тока Serial.print ("Current is " ) ; Serial.print (sensorCurrent.readCurrentAC () ) ; Serial.println (" mA" ) ; delay(100 ) ; }

Элементы платы

Датчик ACS712ELCTR-05B

Датчик тока ACS712ELCTR-05B основан на эффекте Холла, суть которого в следующем: если проводник с током помещён в магнитное поле, на его краях возникает ЭДС, направленная перпендикулярно к направлению тока и направлению магнитного поля.
Микросхема конструктивно состоит из датчика Холла и медного проводника. Протекающий через медный проводник ток создает магнитное поле, которое воспринимается элементом Холла. Магнитное поле линейно зависит от силы тока.

Уровень выходного напряжения сенсора пропорционально зависит от измеряемого тока. Диапазон измерения от −5 А до 5 A. Чувствительность - 185 мВ/А. При отсутствии тока выходное напряжение будет равняться половине напряжения питания.

Датчик тока подключается к нагрузке в разрыв цепи через колодки под винт. Для измерения постоянного тока подключайте сенсор, учитывая направления тока, иначе получите значения с обратным знаком. Для переменного тока - полярность значения не имеет.

Контакты подключения трёхпроводного шлейфа

Модуль подключается к управляющей электронике по трём проводам . Назначение контактов трёхпроводного шлейфа:

    Питание (V) - красный провод. Исходя из документации питание датчика 5 вольт. В результате теста модуль работает и от 3,3 вольт.

    Земля (G) - чёрный провод. Должен быть соединён с землёй микроконтроллера;

    Сигнальный (S) - жёлтый провод. Подключается к аналоговому входу микроконтроллера. Через него управляющая плата считывает сигнал с датчика.

Для обустройства электроснабжения гаража очень удобно знать ток, который потребляется тем или иным устройством, включаемым в эту сеть. Спектр этих устройств достаточно широк и увеличивается постоянно.: дрель, точило, болгарка, нагреватели, сварочные аппараты, ЗУ, промышленный фен, да и много ещё чего….

Для измерения переменного тока, как известно, в качестве собственно токового датчика, как правило, применяют трансформатор тока. Этот трансформатор, в общем похож на обычный понижающий, включенный как бы «наоборот», т.е. его первичная обмотка –это один или несколько витков (или шина) пропущенные через сердечник - магнитопровод, а вторичная представляет собой катушку с большим количеством витков тонкого провода, располагаемую на этом же магнитопроводе (рис1).

Однако, промышленные трансформаторы тока достаточно дороги, громоздки и зачастую рассчитаны на измерение сотен ампер. Трансформатор тока, рассчитанный на диапазон бытовой сети, встретишь в продаже нечасто. Именно по этой причине родилась идея использовать для этой цели электромагнитное реле постоянного/переменного тока, без какого либо использования контактной группы такого реле. В самом деле, любое реле уже содержит катушку с большим количеством витков тонкого провода и единственное, что необходимо для превращения его в трансформатор – это обеспечить вокруг катушки наличие магнитопровода с минимумом воздушных зазоров. Кроме этого, конечно, для такой конструкции необходимо достаточно места, чтобы пропустить первичную обмотку, представляющую вводную сеть.На снимке показан такой датчик, изготовленный из реле типа РЭС22 на 24 В постоянного тока. Это реле содержит обмотку сопротивлением примерно 650 ом. Скорее всего, подобное применение могут найти и многие реле других типов и в том числе остатки неисправных магнитных пускателей и т.п. Для обеспечения магнитопровода якорь реле механически блокируется при максимальном сближении с сердечником. Реле, как бы постоянно находится в сработке. Далее, вокруг катушки делается виток первичной обмотки (на снимке это тройной провод синего цвета).

Собственно, на этом датчик тока готов, без лишней суеты с наматыванием провода на катушку. Конечно, данное устройство трудно считать полноправным трансформатором и ввиду незначительной площади поперечного сечения вновь полученного магнитопровода и, возможно, ввиду отличия характеристики его намагничивания от идеальной. Однако все это оказывается менее важно ввиду того, что мощность такого «трансформатора» нам нужна минимальна и необходима лишь для того, чтобы обеспечить пропорциональное (желательно линейное) отклонение стрелочного индикатора магнитоэлектрической системы в зависимости от тока в первичной обмотке.

Возможная схема сопряжения датчика тока с таким индикатором изображена на схеме (рис.2). Она довольно проста и напоминает схему детекторного приемника. Выпрямительный диод (Д9Б) – германиевый и выбран ввиду малости падения на нем напряжения (около 0,3 В). От этого параметра диода будет зависеть порог минимального значения тока, который способен определить данный датчик. В этой связи, для этого лучше использовать так называемые детекторные диоды с малым падением напряжения, например ГД507 и подобные. Пара кремниевых диодов кд521в установлена в целях защиты стрелочного прибора от перегрузки, которая возможна при значительных бросках тока, вызванных, например, коротким замыканием внутри сети, включением мощных трансформаторов или сварочника. Это весьма обычный в таких случаях прием. Следует заметить, ч то такая простейшая схема имеет тот недостаток что абсолютно может не «увидеть» нагрузку в виде тока одной полярности, как например, нагреватель или ТЭН, подключенный через выпрямительный диод. В этих случаях применяют несколько «усложненную» схему, например, в виде выпрямителя с удвоением напряжения (рис.3).

Эта конструкция родилась оттого, что в свое время я не имел доступа к тем замечательным современным микросхемам, которые были специально разработаны для считывания напряжения с токовых датчиков. Мне необходимо было создать аналог такой микросхемы, максимально простой, но не менее точный. По-моему, получившаяся схема вполне справляется со своей задачей.

Автомобильный датчик тока положительной шины питания на дискретных компонентах.

Первый усилитель тока на транзисторе Q2 имеет усиление 6.2 (Рисунок 1). На Q1 собран усилитель термокомпенсации, управляемый микросхемой IС1В и поддерживающий напряжение коллектора Q1 на постоянном уровне, независимо от температуры схемы. В качестве опорного напряжения схемы используется напряжение источника питания системы 5 В. Указанные на схеме напряжения были измерены в реальном устройстве.

Рисунок 1. Q1 и Q2 преобразуют падение напряжения на токоизмерительном резисторе R3 в синфазное напряжение, согласованное со входными уровнями АЦП микроконтроллеров.

IС1А усиливает разность напряжений на коллекторах транзисторов Q1 и Q2. Коэффициент усиления ОУ этого равен 4.9. R3 образован двумя резисторами для поверхностного монтажа, установленными друг на друга. При выходном напряжении 5 В максимальный ток, измеряемый схемой, равен 25 А.

Два стабилитрона защищают схему от бросков напряжения бортовой сети автомобиля. Как известно, пики напряжения в ней могут достигать 90 В. Если схема спровоцировала вас на критические замечания, подберите номиналы R6 и R7 с минимальным разбросом. Если и это сочтете недостаточным, согласуйте R1 и R4.

Я ничего такого не делал, но работа схемы меня вполне удовлетворяет. В конструкции использованы резисторы для поверхностного монтажа. За исключением R3, все имеют типоразмер 0805 и допуск 1 %.

Не забудьте подобрать для вашей печатной платы стеклотекстолит с фольгой достаточной толщины и сделать широкую токопроводящую дорожку, а для R3 предусмотреть двухпроводное подключение по схеме Кельвина. При максимальном токе 25 А эта схема нагревается очень незначительно.

Один из самых простых способов измерения тока в электрической цепи - это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев [email protected]
Преимущества:
низкое входное синфазное напряжение;
входной и выходной сигнал имеют общую «землю»;
простота реализации с одним источником питания.
Недостатки:
нагрузка не имеет непосредственной связи с «землей»;
отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
нагрузка заземлена;
обнаруживается короткое замыкание в нагрузке.
Недостатки:
высокое синфазное входное напряжение (зачастую очень высокое);
необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока ».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

Измерить ток высоковольтного источника питания? Или ток, потребляемый стартером автомобиля? Или ток с ветрогенератора? Все это можно сделать бесконтактно с помощью одной микросхемы.

Melexis делает следующий шаг в создании экологичных решений, открывая новые возможности для бесконтактного измерения тока в приложениях возобновляемых источников энергии, гибридных электромобилей (HEV) и электромобилей (EV). MLX91206 является программируемым монолитным датчиком, основанным на технологии Triaxis™ Hall. MLX91206 позволяет пользователю построить небольшие экономичные сенсорные решения с малым временем отклика. Чип непосредственно контролирует ток, протекающий во внешнем проводнике, например, шине или дорожке печатной платы.

Бесконтактный датчик тока MLX91206 состоит из КМОП интегральной схемы Холла с тонким слоем ферромагнитной структуры на его поверхности. Интегрированный ферромагнитный слой (IMC) используется в качестве концентратора магнитного потока, обеспечивая его высокое усиление и более высокое отношение сигнал-шум датчика. Датчик особенно подходит для измерения постоянного и/ или переменного тока до 90 кГц с омической изоляцией, характеризуется очень малыми вносимыми потерями, малым временем отклика, небольшим размером корпуса и простотой сборки.

MLX91206 удовлетворяет спрос на широкое использование электроники в автомобильной промышленности, возобновляемых источниках преобразования энергии (солнечная и ветряная), источниках питания, управления двигателем и защите от перегрузки.

Области применения :

  • измерение потребляемого тока в батарейном питании;
  • преобразователи солнечной энергии;
  • автомобильные инверторы в гибридных автомобилях и др.

MLX91206 имеет защиту от перенапряжения и защиту от обратного напряжения и может быть использован в качестве автономного датчика тока, подключенного напрямую к кабелю.

MLX91206 измеряет ток путем преобразования магнитного поля, создаваемого протекающими через проводник токами, в напряжение, которое пропорционально полю. MLX91206 не имеет верхнего предела измеряемого уровня тока, потому что выходной уровень зависит от размера проводника и расстояния от датчика.

Отличительные особенности:

  • программируемый высокоскоростной датчик тока;
  • концентратор магнитного поля, обеспечивающий высокое отношение сигнал/ шум;
  • защита от перенапряжения и переполюсовки;
  • бессвинцовые компоненты для бессвинцовой пайки, MSL3;
  • быстрый аналоговый выход (разрешение ЦАП 12 бит);
  • программируемый переключатель;
  • выход термометра;
  • ШИМ выход (разрешение АЦП 12 бит);
  • 17-битный номер ID;
  • диагностика неисправной дорожки;
  • быстрое время отклика;
  • огромная полоса пропускания DC - 90 кГц.

Как датчик работает :

MLX91206 представляет собой монолитный датчик, выполненный на базе технологии Triais ® Hall . Традиционная планарная Hall технология чувствительна к плотности потока, приложенного перпендикулярно к поверхности ИС. Датчик тока IMC-Hall ® чувствителен к плотности потока, приложенного параллельно поверхности IC. Это достигается за счет интегрированного магнитного концентратора (IMC-Hall ®), который наносится на CMOS кристалл. Датчик тока IMC-Hall ® может применяться в автомобильной промышленности. Он представляет собой датчик Холла, обеспечивающий выходной сигнал, пропорциональный плотности потока, приложенного по горизонтали, и поэтому подходит для измерения тока. Он идеально подойдет в качестве открытой петли датчика тока для монтажа на печатной плате. Передаточная характеристика MLX91206 является программируемой (смещение, усиление, зажимные уровни, диагностические функции...). Выход выбирается между аналоговым и ШИМ. Линейный аналоговый выход используется для приложений, требующих быстрого отклика (<10 мкс.), в то время как выход ШИМ используется для применения там, где требуется низкая скорость при высокой надежности выходного сигнала.

Измерение небольших токов до ±2 A

Небольшие токи могут быть измерены с помощью MLX91206 за счет увеличения магнитного поля через катушку вокруг датчика. Чувствительность (выходное напряжение по сравнению с током в катушке) измерения будет зависеть от размера катушки и числа витков. Дополнительная чувствительность и снижение чувствительности к внешним полям можно получить, добавив экран вокруг катушки. Бобина обеспечивает очень высокую диэлектрическую изоляцию, делая MLX91206 подходящим решением для высоковольтных источников питания с относительными малыми токами. Выход должен быть расширен, чтобы получить максимальное напряжение для больших токов с целью получения максимальной точности и разрешения при измерениях.

Рис.1. Решение для низкого тока.

Средние токи до ±30 A

С помощью одного проводника, расположенного на печатной плате, могут быть измерены токи в диапазоне до 30 А. При трассировке печатной платы необходимо учитывать допустимый ток и общую рассеиваемую мощность дорожки. Дорожки на печатной плате должны быть достаточно толстыми и достаточно широкими, чтобы непрерывно обрабатывать средний ток. Дифференциальное выходное напряжение для этой конфигурации может быть аппроксимировано следующим уравнением:

Vout = 35 мВ/ * I

Для тока 30 А, на выходе будет примерно 1050 мВ.

Рис.2. Решение для средних величин тока.

Измерение больших токов до ±600 A

Другим методом измерения больших токов на печатных платах является использование толстых медных дорожек, способных проводить ток на противоположной стороне печатной платы. MLX91206 должны быть расположены близко к центру проводника, однако, так как проводник очень широкий, выход менее чувствителен к расположению на плате. Эта конфигурация также имеет меньшую чувствительность в зависимости от расстояния и ширины проводника.

Рис.3. Решение для больших величин тока.

О компании melexis

Созданная более десяти лет, компания Melexis разрабатывает и производит продукцию для автомобильной промышленности, предлагая множество интегральных датчиков, ASSPs и СБИС. Решения Melexis чрезвычайно надежны и отвечают высоким стандартам качества, необходимым в автомобильных применениях.