Диафрагма измерительная в комплекте с отбором давления. Диафрагмы для измерения расхода: подробно простым языком

  • Техническая поддержка
  • Стандартная измерительная диафрагма представляет собой тонкий металлический диск с центральным круглым отверстием, имеющим острую кромку. Перепад давления на ней возникает в результате локального увеличения скорости потока в соответствии с законом сохранения энергии и условием неразрывности потока. Зависимость перепада давления от расхода имеет квадратичный характер.


    Одним из основных преимуществ диафрагмы является наличие огромного теоретического и практического материала, а также четкой нормативной базы по влиянию различных факторов на соотношение между расходом и перепадом давления.

    Типы диафрагм:

    Исходя из данных Международного стандарта ИСО 5167, регламентирующего применение трех разновидностей стандартной диафрагмы, различающихся конструктивно, в промышленности широко применяются следующие типы диафрагм:

    ДБС – диафрагма бескамерная;

    ДКС – диафрагма камерная;

    ДФК – диафрагма фланцевая.

    Стандартные диафрагмы имеют весьма широкую область применения. ГОСТ 8.586-2005 допускает использование их при следующих условиях:

    Однофазная и однородная среда (газ, пар, жидкость);

    Число Рейнольдса от 3,2∙103 до 108 (в зависимости от метода отбора давления возможны дополнительные ограничения по числу Рейнольдса);

    Трубопроводы круглого сечения с внутренним диаметром 50...1000 мм;

    Стационарный или медленно меняющийся поток;

    Скорость потока в отверстии диафрагмы не превышает скорости звука.

    Существенным фактором является то, что на физические свойства собственно среды (электропроводность, плотность, вязкость и т. д.) ограничений не накладывается, ограничиваются лишь гидродинамические параметры потока.
    Еще одним важным преимуществом диафрагмы является относительная простота изготовления и низкая стоимость по сравнению с другими типами преобразователей (при сравнительно небольших диаметрах трубопровода и давлениях). Варьируя отношение внутреннего диаметра диафрагмы d к внутреннему диаметру трубопровода D (так называемый коэффициент β = d/D), можно обеспечить требуемый диапазон перепада давления в достаточно широком диапазоне скоростей потока.

    Однако, наряду с преимуществами, стандартные диафрагмы обладают и весьма серьезными недостатками, которые ограничивают их применение и заставляют искать альтернативные методы и средства измерения расхода. К таким недостаткам относятся:

    наличие застойных зон и скопление осадка у диафрагмы;
    значительные потери давления;
    необходимость остановки трубопровода для монтажа/демонтажа диафрагмы;
    жесткие требования к прямым участкам трубопровода;
    увеличение погрешности при износе острых кромок в процессе эксплуатации диафрагм диаметром до 125 мм (эта проблема частично решена для износоустойчивых диафрагм, у которых кромки изначально притуплены, но такие диафрагмы не предусмотрены ГОСТ 8.586-2005);
    ограничения по диаметру и форме сечения трубопровода;
    громоздкость и сложность монтажа при больших диаметрах трубопроводов и высоких давлениях.

    Металлическая пластина с отверстием является простым и относительно недорогим стандартным первичным элементом расходомера. Диафрагма сжимает поток для создания перепада давления на пластине. В результате получается высокое давление перед (по направлению потока) диафрагмой и низкое давление после диафрагмы, разница которых пропорционально квадрату скорости потока. Диафрагма обычно оказывает большее сопротивление потоку, чем другие первичные устройства.

    Практическое преимущество этого устройства в том, что стоимость его незначительно увеличивается с размером трубопровода. Ну и, конечно, очень хорошо разработана теория применения диафрагм, методика калибровки и поверки. Поэтому на коммерческих узлах учета газа до сих пор большинство расходомеров используют диафрагму в качестве первичного элемента.

    Измерительные диафрагмы широко используются в промышленности. Они эффективны для измерения потока «чистых» продуктов и в тех случаях, где линейные потери давления или дополнительные нагрузки на насосы не являются критичными.

    Диафрагма (измерение расхода)

    Схема установленной диафрагмы в кольцевой камере (которая в свою очередь вставлена в трубу). Принятые обозначения: 1. Диафрагма; 2. Кольцевая камера; 3. Прокладка; 4. Труба. Стрелки показывают направление жидкости/газа. Оттенками цвета выделено изменение давления.

    где
    = объёмный расход (at any cross-section), м³/с
    = массовый расход (at any cross-section), кг/с
    = коэффициент истечения, безразмерная величина
    = коэффициент расхода, безразмерная величина
    = площадь сечения трубы, м²
    = площадь
    = диаметр трубы, м
    = диаметр отверстия в диафрагме, м
    = соотношение диаметров трубы и отверстия в диафрагме, безразмерная величина
    = скорость жидкости до диафрагмы, м/с
    = скорость жидкости внутри диафрагмы, м/с
    = давление жидкости до диафрагмы, Па (кг/(м·с²))
    = давление жидкости после диафрагмы, Па (кг/(м·с²))
    = плотность жидкости, кг/м³.

    Течение газа через диафрагму

    В основном, уравнение (2) применимо только для несжимаемых жидкостей. Но оно может быть модифицировано введением коэффициента расширения с целью учёта сжимаемости газов.

    Равен 1.0 для несжимаемых жидкостей и может быть вычислен для газов.

    Расчёт коэффициента расширения

    Коэффициент расширения , который позволяет отследить изменение плотности идеального газа при изоэнтропийном процессе , может быть найден как:

    Для значений менее чем 0.25, стремится к 0, что приводит к обращению последнего члена в 1. Таким образом, для большинства диафрагм справедливо выражение:

    где
    = коэффициент расширения, безразмерная величина
    =
    = отношение теплоёмкостей (), безразмерная величина.

    Подставив уравнение (4) в выражение для массового расхода (3) получим:

    Таким образом, конечное выражение для несжатого (т.е., дозвукового) потока идеального газа через диафрагму для значений β меньших, чем 0.25:

    Помня что и (уравнение состояния реального газа с учётом фактора сжимаемости)

    где
    = отношение теплоёмкостей (), безразмерная величина
    = массовый расход в произвольном сечении, кг/с
    = расход реального газа до диафрагмы, м³/с
    = расходный коэффициент диафрагмы, безразмерная величина
    = площадь сечения отверстия в диафрагме, м²
    =

    Схема установленной диафрагмы в кольцевой камере (которая, в свою очередь, вставлена в трубу). Принятые обозначения: 1. Диафрагма; 2. Кольцевая камера; 3. Прокладка; 4. Труба. Стрелки показывают направление жидкости/газа. Оттенками цвета выделено изменение давления.

    Конструкция диафрагмы

    Диафрагма выполняется в виде кольца. Отверстие в центре с выходной стороны в некоторых случаях может быть скошено. В зависимости от конструкции и конкретного случая диафрагма может вставляться в кольцевую камеру или нет (см. Виды диафрагм). Материалом изготовления диафрагм чаще всего является сталь 12Х18Н10Т (ГОСТ 5632-72), в качестве материала для изготовления корпусов кольцевых камер может использоваться сталь 20 (ГОСТ 1050-88) или сталь 12Х18Н10Т (ГОСТ 5632-2014).

    Течение несжимаемой жидкости через диафрагму

    Предполагая течение жидкости, несжимаемой и невязкой, установившимся, ламинарным, в горизонтальной трубе (изменения уровня отсутствуют) с пренебрежимо маленькими потерями на трение, закон Бернулли сокращается до закона сохранения энергии между двумя точками на одной линии тока:

    P 1 + 1 2 ⋅ ρ ⋅ V 1 2 = P 2 + 1 2 ⋅ ρ ⋅ V 2 2 {\displaystyle P_{1}+{\frac {1}{2}}\cdot \rho \cdot V_{1}^{2}=P_{2}+{\frac {1}{2}}\cdot \rho \cdot V_{2}^{2}}

    P 1 − P 2 = 1 2 ⋅ ρ ⋅ V 2 2 − 1 2 ⋅ ρ ⋅ V 1 2 {\displaystyle P_{1}-P_{2}={\frac {1}{2}}\cdot \rho \cdot V_{2}^{2}-{\frac {1}{2}}\cdot \rho \cdot V_{1}^{2}}

    Из уравнения неразрывности:

    Q = A 1 ⋅ V 1 = A 2 ⋅ V 2 {\displaystyle Q=A_{1}\cdot V_{1}=A_{2}\cdot V_{2}} или V 1 = Q / A 1 {\displaystyle V_{1}=Q/A_{1}} и V 2 = Q / A 2 {\displaystyle V_{2}=Q/A_{2}} :

    P 1 − P 2 = 1 2 ⋅ ρ ⋅ (Q A 2) 2 − 1 2 ⋅ ρ ⋅ (Q A 1) 2 {\displaystyle P_{1}-P_{2}={\frac {1}{2}}\cdot \rho \cdot {\bigg (}{\frac {Q}{A_{2}}}{\bigg)}^{2}-{\frac {1}{2}}\cdot \rho \cdot {\bigg (}{\frac {Q}{A_{1}}}{\bigg)}^{2}}

    Выражая :

    Q = A 2 2 (P 1 − P 2) / ρ 1 − (A 2 / A 1) 2 {\displaystyle Q=A_{2}\;{\sqrt {\frac {2\;(P_{1}-P_{2})/\rho }{1-(A_{2}/A_{1})^{2}}}}}
    и
    Q = A 2 1 1 − (d 2 / d 1) 4 2 (P 1 − P 2) / ρ {\displaystyle Q=A_{2}\;{\sqrt {\frac {1}{1-(d_{2}/d_{1})^{4}}}}\;{\sqrt {2\;(P_{1}-P_{2})/\rho }}}

    Указанное выше выражение для Q {\displaystyle Q} представляет собой теоретический объемный расход. Введём β = d 2 / d 1 {\displaystyle \beta =d_{2}/d_{1}} , а также коэффициент истечения :

    Q = C d A 2 1 1 − β 4 2 (P 1 − P 2) / ρ {\displaystyle Q=C_{d}\;A_{2}\;{\sqrt {\frac {1}{1-\beta ^{4}}}}\;{\sqrt {2\;(P_{1}-P_{2})/\rho }}}

    И, наконец, введём коэффициент расхода C {\displaystyle C} , который определим как C = C d 1 − β 4 {\displaystyle C={\frac {C_{d}}{\sqrt {1-\beta ^{4}}}}} , для получения конечного уравнения для массового расхода жидкости через диафрагму:

    (1) Q = C A 2 2 (P 1 − P 2) / ρ {\displaystyle (1)\qquad Q=C\;A_{2}\;{\sqrt {2\;(P_{1}-P_{2})/\rho }}}

    Умножим полученное нами ранее уравнение (1) на плотность жидкости, чтобы получить выражение для массового расхода в любом сечении трубы:

    (2) m ˙ = ρ Q = C A 2 2 ρ (P 1 − P 2) {\displaystyle (2)\qquad {\dot {m}}=\rho \;Q=C\;A_{2}\;{\sqrt {2\;\rho \;(P_{1}-P_{2})}}}

    где
    = объёмный расход (at any cross-section), м³/с
    m ˙ {\displaystyle {\dot {m}}} = массовый расход (at any cross-section), кг/с
    C d {\displaystyle C_{d}} = коэффициент истечения, безразмерная величина
    C {\displaystyle C} = коэффициент расхода, безразмерная величина
    A 1 {\displaystyle A_{1}} = площадь сечения трубы, м²
    A 2 {\displaystyle A_{2}} = площадь сечения отверстия в диафрагме, м²
    d 1 {\displaystyle d_{1}} = диаметр трубы, м
    d 2 {\displaystyle d_{2}} = диаметр отверстия в диафрагме, м
    β {\displaystyle \beta } = соотношение диаметров трубы и отверстия в диафрагме, безразмерная величина
    V 1 {\displaystyle V_{1}} = скорость жидкости до диафрагмы, м/с
    V 2 {\displaystyle V_{2}} = скорость жидкости внутри диафрагмы, м/с
    P 1 {\displaystyle P_{1}} = давление жидкости до диафрагмы, Па (кг/(м·с²))
    P 2 {\displaystyle P_{2}} = давление жидкости после диафрагмы, Па (кг/(м·с²))
    ρ {\displaystyle \rho } = плотность жидкости, кг/м³.

    Течение газа через диафрагму

    В основном, уравнение (2) применимо только для несжимаемых жидкостей. Но оно может быть модифицировано введением коэффициента расширения Y {\displaystyle Y} с целью учёта сжимаемости газов.

    (3) m ˙ = ρ 1 Q = C Y A 2 2 ρ 1 (P 1 − P 2) {\displaystyle (3)\qquad {\dot {m}}=\rho _{1}\;Q=C\;Y\;A_{2}\;{\sqrt {2\;\rho _{1}\;(P_{1}-P_{2})}}}

    Y {\displaystyle Y} равен 1.0 для несжимаемых жидкостей и может быть вычислен для газов.

    Расчёт коэффициента расширения

    Коэффициент расширения Y {\displaystyle Y} , который позволяет отследить изменение плотности идеального газа при изоэнтропийном процессе , может быть найден как:

    Y = r 2 / k (k k − 1) (1 − r (k − 1) / k 1 − r) (1 − β 4 1 − β 4 r 2 / k) {\displaystyle Y=\;{\sqrt {r^{2/k}{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg (}{\frac {\;1-r^{(k-1)/k\;}}{1-r}}{\bigg)}{\bigg (}{\frac {1-\beta ^{4}}{1-\beta ^{4}\;r^{2/k}}}{\bigg)}}}}

    Для значений β {\displaystyle \beta } менее чем 0.25, β 4 {\displaystyle \beta ^{4}} стремится к 0, что приводит к обращению последнего члена в 1. Таким образом, для большинства диафрагм справедливо выражение:

    (4) Y = r 2 / k (k k − 1) (1 − r (k − 1) / k 1 − r) {\displaystyle (4)\qquad Y=\;{\sqrt {r^{2/k}{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg (}{\frac {\;1-r^{(k-1)/k\;}}{1-r}}{\bigg)}}}}

    где
    Y {\displaystyle Y} = коэффициент расширения, безразмерная величина
    r {\displaystyle r} = P 2 / P 1 {\displaystyle P_{2}/P_{1}}
    k {\displaystyle k} = отношение теплоёмкостей ( c p / c v {\displaystyle c_{p}/c_{v}} ), безразмерная величина.

    Подставив уравнение (4) в выражение для массового расхода (3) получим:

    M ˙ = C A 2 2 ρ 1 (k k − 1) [ (P 2 / P 1) 2 / k − (P 2 / P 1) (k + 1) / k 1 − P 2 / P 1 ] (P 1 − P 2) {\displaystyle {\dot {m}}=C\;A_{2}\;{\sqrt {2\;\rho _{1}\;{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg [}{\frac {(P_{2}/P_{1})^{2/k}-(P_{2}/P_{1})^{(k+1)/k}}{1-P_{2}/P_{1}}}{\bigg ]}(P_{1}-P_{2})}}}
    и
    m ˙ = C A 2 2 ρ 1 (k k − 1) [ (P 2 / P 1) 2 / k − (P 2 / P 1) (k + 1) / k (P 1 − P 2) / P 1 ] (P 1 − P 2) {\displaystyle {\dot {m}}=C\;A_{2}\;{\sqrt {2\;\rho _{1}\;{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg [}{\frac {(P_{2}/P_{1})^{2/k}-(P_{2}/P_{1})^{(k+1)/k}}{(P_{1}-P_{2})/P_{1}}}{\bigg ]}(P_{1}-P_{2})}}}

    Таким образом, конечное выражение для несжатого (т.е., дозвукового) потока идеального газа через диафрагму для значений β меньших, чем 0.25:

    (5) m ˙ = C A 2 2 ρ 1 P 1 (k k − 1) [ (P 2 / P 1) 2 / k − (P 2 / P 1) (k + 1) / k ] {\displaystyle (5)\qquad {\dot {m}}=C\;A_{2}\;{\sqrt {2\;\rho _{1}\;P_{1}\;{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg [}(P_{2}/P_{1})^{2/k}-(P_{2}/P_{1})^{(k+1)/k}{\bigg ]}}}}

    (6) m ˙ = C A 2 P 1 2 M Z R T 1 (k k − 1) [ (P 2 / P 1) 2 / k − (P 2 / P 1) (k + 1) / k ] {\displaystyle (6)\qquad {\dot {m}}=C\;A_{2}\;P_{1}\;{\sqrt {{\frac {2\;M}{Z\;R\;T_{1}}}{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg [}(P_{2}/P_{1})^{2/k}-(P_{2}/P_{1})^{(k+1)/k}{\bigg ]}}}}

    Помня что Q 1 = m ˙ ρ 1 {\displaystyle Q_{1}={\frac {\dot {m}}{\rho _{1}}}} и ρ 1 = M P 1 Z R T 1 {\displaystyle \rho _{1}=M\;{\frac {P_{1}}{Z\;R\;T_{1}}}} (уравнение состояния реального газа с учётом фактора сжимаемости)

    (8) Q 1 = C A 2 2 Z R T 1 M (k k − 1) [ (P 2 / P 1) 2 / k − (P 2 / P 1) (k + 1) / k ] {\displaystyle (8)\qquad Q_{1}=C\;A_{2}\;{\sqrt {2\;{\frac {Z\;R\;T_{1}}{M}}{\bigg (}{\frac {k}{k-1}}{\bigg)}{\bigg [}(P_{2}/P_{1})^{2/k}-(P_{2}/P_{1})^{(k+1)/k}{\bigg ]}}}}