Как проверить стабилитрон мультиметром на напряжение. Подробная инструкция

Каждый радиолюбитель знает, как бывает иногда важно знать, исправна ли та или иная радиодеталь или нет. Не в последнюю очередь это касается стабилитронов. В качестве тестера для проверки электрокомпонентов на предмет наличия напряжения стабилизации служит мультиметр.

Стабилитрон и его свойства

Для работы электронных схем на выходе нужны стабилизированные показатели напряжения. Они получаются с помощью включения в схему полупроводниковых стабилитронов, которые дают одинаковое выходное напряжение, не зависящее от величины пропускаемого электротока. Без этих элементов многие слаботочные системы не работают. Так, например, почти каждый радиолюбитель хотя бы раз в жизни паял стабилизатор напряжения l7805cv или его аналоги.

У стабилитронов нелинейные вольт-амперные характеристики, по свойствам, а также по внешнему виду (в стекле или металле) они напоминают обычный диод, однако, задачи у них несколько другие. Стабилитроны подключают в схему параллельно с потребителем и, если напряжение резко повышается, ток идет через стабилитрон, и вольтаж в сети выравнивается. Если сильный ток воздействует длительное время, возникает тепловой пробой.

Порядок проверки

Для того чтобы определить, годен ли данный стабилитрон или же вышел из строя, мультиметр надо перевести в режим, которым проверяются диоды (или в режим омметра), – проверка стабилитронов методом прозвона осуществляется аналогичным образом.

Щупы мультиметра подсоединяют к выводам стабилитрона и наблюдают за показаниями индикатора. Проверку следует проводить в двух направлениях:

  • плюсовым щупом аппарата прикасаются к катоду детали – на индикаторе показывается бесконечное сопротивление;
  • мультиметр подсоединяют к аноду стабилитрона – на экране будет индицироваться сопротивление в единицах или десятках ом (падение напряжения).

Такие показатели появляются потому, что рабочий стабилитрон (как и обычный диод) способен проводить только однонаправленный электрический ток, а проверка не должна вызывать короткое замыкание в сети.

Если при прозвоне в обоих направлениях мультиметр показывает бесконечное сопротивление, стабилитрон является дефектным, поскольку оборван электронно-дырочный переход, и ток через электродеталь не проходит.

Обратите внимание! Иногда случается, что при измерениях стабилитрона мультиметром выдается сопротивление в несколько десятков или сотен ом в обоих направлениях. В случае обычных диодов такое положение обозначает, что деталь пробита. Однако, для стабилитрона это неверно, потому что у него имеется напряжение пробоя: при соприкосновении щупа мультиметра с оконцовками стабилитрона сказывается внутреннее напряжение электропитания измерительного прибора. Если его напряжение оказывается больше напряжения пробоя, то на индикаторе появятся показатели многоомного сопротивления.

Так, при напряжении батареи мультиметра в 9 вольт у стабилитронов с напряжением ниже этого значения будет индицироваться пробой. Поэтому специалисты не рекомендуют делать проверку стабилитронов с невысоким стабилизационным напряжением с помощью цифровых мультиметров. Для этих целей лучше подойдет старый добрый тестер – аналог.

Как проверить стабилитрон на плате

Если стабилитрон впаян в плату, то порядок его проверки не отличается от того, что применяется для свободного электронного устройства такого типа.

Важно! При измерительных и ремонтных манипуляциях с платой обязательно соблюдать меры безопасности для защиты от электроудара. При прозвоне впаянного стабилитрона все другие элементы, кроме проверяемого, могут выдавать сильно измененные показатели, это тоже необходимо учитывать.

Если при проверке на плате получены сомнительные результаты пригодности стабилитрона, то стоит его выпаять и проверить мультиметром только этот элемент, изолировав его от влияния остальных деталей схемы. Также иногда можно использовать приставку к мультиметру, которую можно спаять своими руками из доступных деталей.

Каждому радиолюбителю желательно знать, как проверить стабилитрон мультиметром, – это поможет собирать работающие схемы и экономить радиодетали, выявляя неработающие. Однако при такой проверке нельзя получить 100%-ный достоверный результат. Гарантию пригодности стабилитрона может дать только включение его в электросхему: если устройство будет работать, значит, стабилизирующий элемент функционирует.

Видео


Для многих радиолюбительских самоделок необходимы стабилизированные источники питания. Основным их элементом является стабилитрон, который способен обеспечить постоянное выходное напряжение. Проверить работоспособность и функционирование этого радиоэлемента можно несколькими способами.


Полностью его проверить и со 100% уверенностью сказать, что этот стабилитрон исправный цифровым мультиметром нельзя. Его конечно можно проверить , но можно ошибочно посчитать рабочий стабилитрон испорченным. Это разве возможно?.

Проведем небольшой практический эксперимент, возьмем любой стабилитрон с маленьким напряжением стабилизации, например 2,4 вольт. И подсоединим к цифровому мультиметру, а он в обоих направлениях звонится. А весь фокус в том, что на щупах цифрового мультиметра присутствует около 5 вольт, и поэтому в обратном направление его просто пробивает. Поэтому не стоит проверять стабилитроны с низким напряжением стабилизации цифровыми мультиметрами, лучше используйте старый аналоговый тестер, а если его нет можно собрать небольшую схему ниже.

Основным узлом схемы является преобразователь преобразующий 9 вольт в 45 выполненный на микросхеме МС34063. Эта микросхема специально применяется в повышающих, понижающих и инвертирующих преобразователях с минимумом элементов. Напряжение на выходе МС34063, получаемое повышающим преобразователем, задается резисторами R2 и R4. Резистор R5 ограничивает выходной ток до трех миллиампер, чтобы не повредить тестируемый стабилитрон. Вольтметр предназначен для измерения напряжения стабилизации.

Вся схема монтируется на печатной плате. Для подключения к мультиметру приспособил вилку от старого зарядного устройства. Запитал схему от батарейки типа "Крона", которую разместил в боксе и закрепил на плате. Индуктивность намотал на пластмассовой катушке с размерами: внешний диаметр - 15мм, внутренний - 5мм, расстояние между щёчками - 15мм. Провод использовал ПЭЛ, ПЭВ диаметром 0,2мм, наматываем до заполнения.

Предлагаемая приставка к мультиметру позволит проверить главный параметр любого стабилитрона - напряжение стабилизации. Основа схемы блок преобразователя напряжения от калькулятора "Электроника МК-24", который вы врятли захотите использовать по прямому назначению. Блок имеет три вывода: "+", "-" и "VBbo", на корпусе надпись КФ-29. Если на его вход подать 1,5 В на выводе будет напряжение около 15 В. Резистор R1 вместе с тестируемым стабилитроном составляют параметрический стабилизатор напряжения.

К разъемам XS1 и XS2 подключают цифровой мультиметр например М-830 в режиме измерения напряжения. Пока стабилитрон не подключен, мультиметр показывает выходное напряжение преобразователя. Как только подключим испытуемый стабилитрон мультиметр покажет напряжение стабилизации. В случае если вы его подключите как диод, то вы увидете на дисплее 0,7 В. Если при обоих подключениях показывает почти ноль, то стабилитрон пробит. Учтите что стабилитроны с напряжением стабилизации выше 15 вольт проверить не получится.

Если блок-преобразователь от калькулятора найти не получится, можете использовать вот эту схему:


Основа схемы транзистор VT1 и трансформатор Т1 на которых собран блокинг-генератор. Импульсы с выхода транзистора VT1 выпрямляются диодом VD1, через резистор R1 поступают на разъемы XS1 и XS2. .

Трансформатора Т1 собран на ферритовом кольце К10*6хЗ мм магнитной проницаемостью 1000-2000. Первичная обмотка состоит из 20 витков, а вторичная - 10 витков провода ПЭВ-2 0,31

Диод 1N5817 можно заменить на 1N5818, 1N5819.

Схема устройства достаточно проста. Напряжение, поступающее со вторичных обмоток трансформатора на 24 вольта, выпрямляется и на выходе фильтра получается постоянное напряжение 80В, которое подается на стабилизатор напряжения, собранный на элементах (R1, R2, D1, D2 и Q1),с его выхода получается постоянное напряжение 52 Вольта, чтобы не превысить максимум порогового напряжения на микросхеме LM317AHV.



На микросхеме LM317AHV построен генератор постоянного тока, куда введен переключатель S2 с резистором R4, для выработки двух тестовых режимов (5мА и 15мА) в качестве источников тока для тестируемого стабилитрона.

Схему этого устройства для проверки стабилитрона легко повторить используя стандартные и дешевые радиоэлементы. Готовый импульсный блок питания можно позаимствовать из ненужного DVD , а качестве вольтметра можно применить один из дешевых китайских мультиметров, например D-830.

Всего несколько часов потребуется, чтобы изготовить это устройство. Оно предназначено для проверки исправности. определения цоколевки и напряжения стабилизации стабилитронов. Но с его помощью можно проверять и другие полупроводниковые приборы, например, определить напряжение пробоя эмиттерного перехода транзистора, которые иногда используются в качестве стабилитронов.

Как проверить стабилитрон

И так, как же проверить стабилитрон? При проверке не ставилась задача определять зависимость напряжения стабилизации от протекающего тока. Схема устройства показана на рис. 1. В его состав входят повышающий преобразователь напряжения, собранный на микросхеме DD1 и транзисторе VT1, а также специализированный модуль F08508G. В Интернете этот модуль (рис. 2) позиционируется как тестер аккумуляторной батареи автомобиля и представляет собой трехразрядный измеритель напряжения с цифровым светодиодным индикатором. Он позволяет измерять постоянное напряжение до 99,9 В

На логических элементах DD1.1 - DD1.3 собран генератор импульсов, элемент DD1.4 - буферный. Частоту задают параметры элементов С2 и R1, и для указанных на схеме она - примерно 9 кГц. Импульсы с его выхода через резистор R2 поступают на базу транзистора VT1, который работает в ключевом режиме. Когда он открыт, через дроссель L1 протекает ток и энергия накапливается в его магнитном поле.

Когда транзистор закрывается, на коллекторе возникает ЭДС самоиндукции и формируется импульс напряжения амплитудой около 60 В, который затем выпрямляется диодом VD1, и конденсатор СЗ заряжается до этого напряжения. Через токоограничивающий резистор R3 это напряжение поступает на испытываемый стабилитрон и на вход модуля. С помощью переключателя SA2 изменяют полярность напряжения на стабилитроне, но не на входе модуля.
Снимая показания с индикатора модуля, можно определить напряжение стабилизации и цоколёвку стабилитрона.

Печатная плата устройсто для проверки стабилитронов

При этом следует учесть, что, если стабилитрон обычный, в его состав входит один p-n переход (VD1 на рис. 3). Поэтому при напряжении обратной полярности (плюс - на катод, минус - на анод) будет индицироваться напряжение пробоя, для стабилитрона это и есть напряжение стабилизации. При смене полярности на р-n переходе будет прямое напряжение, если он кремниевый, то это около 0,6 В. Если стабилитрон симметричный (VD2 рис. 2), при смене полярности напряжение стабилизации меняется незначительно. Но есть еще и так называемые термокомпенсированные стабилитроны, в состав которых входит дополнительный диод (VD3 на рис. 3).

В этом случае при одной полярности подключения на вход модуля А1 поступит напряжение стабилизации, а при другой - выходное напряжение преобразователя. Генератор импульсов можно собрать и на других микросхемах, фрагменты схемы устройства в случае применения микросхем К561ЛН2 и К561ЛА7 (К561ЛЕ5) показаны на рис. 4 и рис. 5 соответственно.
Элементы устройства смонтированы на макетной плате (рис. 6) с использованием проводного монтажа. Применён резистор МЛТ, С223, оксидные конденсаторы - импортные, конденсатор С2 - К1017. Транзистор - любой из серий КТ815 и КТ817. Выключатель питания и переключатель - малогабаритные любого типа. Дроссель - штатный дроссель от КЛЛ, который намотан на Ш-образном ферритовом магнитопроводе (рис. 7).

Обычная индуктивность таких дросселей - несколько миллигенри. Для подключения исследуемых приборов можно использовать зажимы «крокодил» (XS1, XS2). Взамен модуля можно применить цифровой мультиметр в режиме измерения постоянного напряжения. Налаживание сводится к изменению частоты генератора для получения выходного напряжения (без нагрузки) около 60 В. Сделать это можно подборкой конденсатора С2 (увеличивая или уменьшая ёмкость) или резистора R1 (только в сторону увеличения сопротивления). Питается устройство от батареи 6F22 (Крона), максимальный потребляемый ток - 38 мА.

Информация для начинающих радиолюбителей:
функции проверки стабилитронов в мультиметрах нет.

И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.

Собрать решил устройство как приставку к мультиметру, причём компактную. Корпус от упаковки безопасных лезвий «Schick ». Розетка для оконечника телефонного кабеля подошла и по размеру и по цвету, а к ней удалось приладить кнопку включения питания. Учитывая некоторое своеобразие корпуса, сборку пришлось выполнять, так сказать, «пошаговым» способом.

Шаг первый

Шаг второй - уборка в нишу корпуса всего выше перечисленного и установка по месту штырей (образующих импровизированную вилку для соединения пробника с мультиметром) путём использования на них резьбового соединения и двух гаек М4 на каждый. Расстояние между центров штырей 18,5 мм.

Шаг третий - установка светодиодов и ограничительных резисторов.

Спрятал содержимое «от глаз подальше» и сверху прикрутил подходящие контакты для подсоединения проверяемых стабилитронов. Контакты можно поворачивать вокруг своей оси и тем самым менять расстояние между ними в зависимости от длины проверяемого компонента. Пробую в деле:

Импортный стабилитрон BZX85C18 - чуток не дотянул до заявленного параметра.

Зато отечественный КС515А не подкачал, как говориться «в яблочко». И вот теперь имею в арсенале Schick арный тестер стабилитронов.))

Видео

Сам мультиметр конечно можно заменить любым, даже стрелочным, вольтметром - это будет полезно, если по ходу работы в мастерской вам часто приходится проверять такие детали. Желаю успехов, Babay. Россия, Барнаул.

На сегодняшний день электроника прочно вошла в жизнь и имеется в составе любого прибора или гаджета. Но, как не прискорбно, это было и приборы, и гаджеты ломаются и приходят в негодность. Самой часто встречающейся причиной, по которой многие приборы ломаются — это поломка одного из элемента электрической сети, к примеру диод.

Выполнить проверку поломки или неисправности этого элемента возможно самостоятельно. В статье разберем подробно как проверить диод мультиметром, а также что представляет из себя этот прибор и как им пользоваться.

Диоды бывают разные

Простой диод является элементом электрической сети и несет в себе роль полупроводника, то есть р-n переход. Он устроен так, что вполне может осуществить пропуск тока по цепи, но только в одну сторону. И осуществляется это от анода к катоду. Для этого обязательно к аноду присоединяется «плюс», а к катоду — «минус».

Обязательно стоит учесть и запомнить! Двигаться в обратном направлении ток в диоде не может. Из-за такого отличительного момента изделие возможно проверить на неисправность с помощью тестера или мультметра. Рассмотрим какие же бывают диоды и чем отличаются друг от друга.

Типы диодов:

  1. Простой диод.
  2. Стабилитрон, как понятно из названия он препятствует повышению напряжения, то есть стабилизирует его.
  3. Варикап, диод обладающий емкостью, часто встречается в УКВ приемниках.
  4. Тиристор, диод с управляющим электродом, при подачи сигнала на управляющий электрод можно управлять состоянием тиристора, то есть открывать его или закрывать. Такой элемент часто встречается в силовой электронике.
  5. Симистор, примерно тоже самое, что и тиристор только для переменного напряжения. Диагностика данного диода будет рассмотрена в другой статье.
  6. Светодиод, диод излучающий свет при прохождении через него тока.
  7. Диод Шотки, диод обладающий повышенным быстродействием и малым падением напряжения.

Также есть фотодиоды, инфракрасные диоды и др.

Несмотря на то, что диоды отличаются по назначению и переходу, их проверка выполняется аналогично. Принцип работы диодов аналогичен.

Что называется мультиметром?

Мультиметр — это прибор, который имеет ряд функций:

  • Измерение напряжения, тока;
  • Измерение сопротивления;
  • Прозвонка, в этом режиме мультиметр показывает напряжение падения в мВ.
  • Также могут буть функции измерения емкости, температуры, частоты и др.

Как проверить диод мультиметром?

После того как определились с типом диодов, их различиями и особенностями, а также с назначением этого прибора, можно рассмотреть порядок работы с ним. Проверка заключается в том, что проверяют пропускную способность тока через них. Если это правило соблюдается, то смело можно заявить, что элемент схемы работает исправно и не имеет недостатков.

Обычные диоды проверяются этим прибором без особых усилий. Чтобы выполнить диагностику этих элементов достаточно выполнить следующие действия:

Проверка работоспособности диода, светодиода, стабилитрона.

  • Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
  • Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
  • Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;

  • Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
  • Меняем местами красный и черный щуп прибора;
  • Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;

  • Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
  • Делаем выводы о работоспособности элемента.

Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.

Признаки неисправного диода

  • Если диод неисправен, то в режиме прозвонки прибор запищит, а в режиме измерения сопротивления покажет значение близкое к 0, что говорит о том что диод коротко замкнут, то есть пробит.
  • Если при обоих измерениях прибор показывает 1, тоесть бесконечно большую величину, это означает, что диод в обрывае.

Диодный мост

Бывает, что возникает необходимость в диагностике диодного моста. Он представляет собой сборку, которая состоит из 4 полупроводников. Причем они соединены так, что переменное напряжение преобразуется в постоянное. Принцип проверки практически такой же. Важной отличительной особенностью является то, что нужно определить как подключены диоды в диодном мосту и проверить каждый диод в прямом и обратном направлении.





Заключение

Провести диагностику работоспособности полупроводников в приборе самостоятельно не сложно. Важно соблюдать порядок действий с мультиметром и четко выполнять все по инструкции. Но при этом обязательно начиная проверку нужно обратить внимание на тип элемента, иметь понятие о том, какое должно быть рабочее сопротивление и напряжение у исправного диода этой разновидности и только потом проводить диагностику и делать выводы.

Используя прибор для проверки исправности диода или любых других целей нужно придерживаться техники безопасности при пользовании им. Все щупы должны быть в исправном состоянии, изоляция проводов должна быть целостной. Если имеются какие — ни будь дефекты, то их желательно сразу устранить, чтобы не нанести себе травмы при измерении. Также важно помнить, что у каждого прибора есть своя погрешность, в дешевых моделях она очень большая. И это важно учитывать при проведении проверки. От того насколько правильно будут выполнены все действия по диагностике, будет зависеть и результат проверки, и ее точность. Поэтому нужно уделить этому должное внимание.