Какие характеристики у датчика температуры и влажности Ардуино? Подключение датчика DHT11 или DHT22 к Ардуино Подключение датчика dht11 к ардуино.

Соединяем Arduino с датчиком влажности почвы FC-28, чтобы определить, когда ваша почва под растениями нуждается в воде.

В этой статье мы собираемся использовать датчик влажности почвы FC-28 с Ардуино. Этот датчик измеряет объемное содержание воды в почве и дает нам уровень влаги. Датчик дает нам на выходе аналоговые и цифровые данное. Мы собираемся подключить его в обоих режимах.

Датчик влажности почвы состоит из двух датчиков, которые используются для измерения объемного содержания воды. Два зонда позволяют току пройти через почву, которая дает значение сопротивления, что позволяет в итоге измерить значение влаги.

Когда есть вода, почва будет проводить больше электричества, а это значит, что будет меньше сопротивление. Сухая почва плохо проводит электричество, поэтому когда воды меньше, почва проводит меньше электричества, а это значит, что сопротивление будет больше.

Датчик FC-28 можно соединить в аналоговом и цифровом режимах. Сначала мы подключим его в аналоговом режиме, а затем в цифровом.

Спецификация

Спецификации датчика влажности почвы FC-28:

  • входное напряжение: 3.3–5V
  • выходное напряжение: 0–4.2V
  • входной ток: 35mA
  • выходной сигнал: аналоговый и цифровой

Распиновка

Датчик влажности почвы FC-28 имеет четыре контакта:

  • VCC: питание
  • A0: аналоговый выход
  • D0: цифровой выход
  • GND: земля

Модуль также содержит потенциометр, который установит пороговое значение. Это пороговое значение будет сравниваться на компараторе LM393. Светодиод будет нам сигнализировать значение выше или ниже порогового.

Аналоговый режим

Для подключения датчика в аналоговом режиме нам потребуется использовать аналоговый выход датчика. Датчик влажности почвы FC-28 принимает аналоговые выходные значения от 0 до 1023.

Влажность измеряется в процентах, поэтому мы сопоставим эти значения от 0 до 100, а затем покажем их на последовательном мониторе (serial monitor). Вы можете установить различные значения влаги и повернуть водяную помпу "включено-выключено" согласно этим значениям.

Электрическая схема

Подключите датчик влажности почвы FC-28 к Ардуино следующим образом:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • A0 FC-28 → A0 Arduino

Код для аналогового выхода

Для аналогового выхода мы пишем такой код:

Int sensor_pin = A0; int output_value ; void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); } void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,0,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Объяснение кода

Прежде всего, мы определили две переменные: одну для контакта датчика влажности почвы, а другую для хранения выхода датчика.

Int sensor_pin = A0; int output_value ;

В функции setup, команда Serial.begin(9600) поможет в общении между Arduino и серийным монитором. После этого, мы напечатаем "Reading From the Sensor ...” (англ. - считываем с датчика) на обычном дисплее.

Void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); }

В функции цикла, мы прочитаем значение от аналогового выхода датчика и сохраним значение в переменной output_value . Затем мы сопоставим выходные значения с 0-100, потому что влажность измеряется в процентах. Когда мы брали показания с сухого грунта, значение датчика было 550, а во влажном грунте значение датчика было 10. Мы сопоставили эти значения, чтобы получить значение влаги. После этого мы напечатали эти значения на последовательном мониторе.

Void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,10,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Цифровой режим

Для подключения датчика влажности почвы FC-28 в цифровом режиме мы подключим цифровой выход датчика к цифровому контакту Arduino.

Модуль датчика содержит потенциометр, который использован для того чтобы установить пороговое значение. Пороговое значение после этого сравнивается со значением выхода датчика используя компаратор LM393, который помещен на модуле датчика FC-28. Компаратор LM393 сравнивает значение выхода датчика и пороговое значение, и после этого дает нам выходное значение через цифровой вывод.

Когда значение датчика больше чем пороговое значение, цифровой выход передаст нам 5В, и загорится светодиод датчика. В противном случае, когда значение датчика будет меньше чем это пороговое значение на цифровой вывод передастся 0В и светодиод не загорится.

Электрическая схема

Соединения для датчика влажности почвы FC-28 и Ардуино в цифровом режиме следующие:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • D0 FC-28 → Пин 12 Arduino
  • Светодиод положительный → Вывод 13 Ардуино
  • Светодиод минус → GND Ардуино

Код для цифрового режима

Код для цифрового режима ниже:

Int led_pin =13; int sensor_pin =8; void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); } void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

Объяснение кода

Прежде всего, мы инициализировали 2 переменные для соединения вывода светодиода и цифрового вывода датчика.

Int led_pin = 13; int sensor_pin = 8;

В функции setup мы объявляем пин светодиода как пин выхода, потому что мы включим светодиод через него. Мы объявили пин датчика как входной пин, потому как Ардуино будет принимать значения от датчика через этот вывод.

Void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); }

В функции цикла, мы считываем с вывода датчика. Если значение более высокое чем пороговое значение, то включится светодиод. Если значение датчика будет ниже порогового значения, то индикатор погаснет.

Void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

На этом вводный урок по работе с датчиком FC-28 для Ардуино мы завершаем. Успешных вам проектов.

Продолжаем серию уроков . Сегодня мы разберем подключение к Arduino датчиков температуры и влажности DHT11 и DHT22.

Датчики DHT11 и DHT22 не обладают высоким быстродействием и точностью, но зато просты, недороги и отлично подходят для обучения. Они выполнены из двух частей — емкостного датчика влажности и термистора. Чип, находящийся внутри, выполняет аналого-цифровое преобразование и выдает цифровой сигнал, который можно считать с помощью любого микроконтроллера.

Список деталей для сборки модели

Для сборки проекта, описанного в этом уроке, понадобятся следующие детали:

  • плата Arduino (подробнее, о том как выбрать Arduino );
  • датчик DHT11 или DHT22 (можно купить, например, или );
  • Breadboard;
  • резистор на 10 кОм;
  • программа Arduino IDE, которую можно скачать с сайта Arduino .

Датчики DHT11 и DHT22

Чем отличаются датчики DHT11 и DHT22?

Две версии сенсоров DHT похожи друг на друга и имеют одинаковую распиновку. Их отличия в характеристиках. Спецификации:

Сенсор DHT11:

  • определение влажности в диапозоне 20-80%
  • определение температуры от 0°C до +50°C
  • частота опроса 1 раз в секунду

Сенсор DHT22:

  • определение влажности в диапазоне 0-100%
  • определение температуры от -40°C до +125°C
  • частота опроса 1 раз в 2 секунды

Таким образом, характеристики датчика DHT22 лучше по сравнению с DHT11, и поэтому он чуть-чуть дороже. Снимать показания чаще, чем раз в 1-2 секунды не получится, но, возможно, для вашего проекта более высокое быстродействие и не требуется.

Подключение сенсоров DHT к Arduino

Датчики DHT имеют стандартные выводы и их просто установить на breadboard.

Датчики DHT имеют 4 вывода:

  1. питание.
  2. вывод данных
  3. не используется.
  4. GND (земля).

Между выводами питания и вывода данных нужно разместить резистор номиналом 10 кОм.

Датчик DHT часто продается в виде готового модуля. В этом случае он имеет три вывода и подключается без резистора, т.к. резистор уже есть на плате.

Схема подключения датчика с резистором:

Схема подключения датчика DHT к Arduino

Arduino скетч

Воспользуемся библиотекой DHT.h, созданной специально для датчиков DHT. Ее можно скачать . Для использования нужно поместить скачанную папку в в папку /libraries.

Пример программы для работы модели с датчиком DHT22 (можно просто скопировать в Arduino IDE):
#include "DHT.h"
#define DHTPIN 2 // номер пина, к которому подсоединен датчик
// Раскомментируйте в соответствии с используемым датчиком
// Инициируем датчик
DHT dht(DHTPIN, DHT22);
//DHT dht(DHTPIN, DHT11);
void setup() {
Serial.begin(9600);
dht.begin();
}
void loop() {
// Задержка 2 секунды между измерениями
delay(2000);
//Считываем влажность
float h = dht.readHumidity();
// Считываем температуру
float t = dht.readTemperature();
// Проверка удачно прошло ли считывание.
if (isnan(h) || isnan(t)) {
Serial.println("Не удается считать показания");
return;
}
Serial.print("Влажность: "+h+" %\t"+"Температура: "+t+" *C ");
}
При использовании датчика DHT11 закомментируйте строку:
DHT dht(DHTPIN, DHT22);
И раскомментируйте строку:
//DHT dht(DHTPIN, DHT11);
Загрузите скетч в контроллер и проверьте правильность работы при помощи Сервис->Монитор порта:

Показания температуры и влажности (Монитор порта)

Вы должны увидеть температуру и влажность. Изменения можно увидеть, например, выдыхая на датчик (как для затуманивания окна). Дыхание увеличивает влажность.

Посты по урокам:

  1. Первый урок:
  2. Второй урок:
  3. Третий урок:
  4. Четвертый урок:
  5. Пятый урок:
  6. Шестой урок:
  7. Седьмой урок:
  8. Восьмой урок:
  9. Девятый урок:

Хотели бы вы, чтобы ваши растения сообщали о том, что их надо полить? Или просто держали вас в курсе уровня влажности почвы?

В этой статье мы рассмотрим проект автоматизированного полива с использованием датчика уровня влажности почвы:

Обзор датчика уровня влажности почвы

Подобные датчики подключаются достаточно просто. Два из трех коннекторов - это питание (VCC) и земля (GND). При использовании датчик желательно периодически отключать от источника питания, чтобы избежать возможного окисления. Третий выход - сигнал (sig), с которого мы и будем снимать показания. Два контакта датчика работают по принципу переменного резистора - чем больше влаги в почве, тем лучше контакты проводят электричество, падает сопротивление, сигнал на контакте SIG растет. Аналоговые значения могут отличаться в зависимости от напряжения питания и разрешающей способности ваших аналоговых пинов микроконтроллера.

Для подключения датчика можно использовать несколько вариантов. Коннектор, приведенный на рисунке ниже:

Второй вариант более гибкий:

Ну и конечно можно напрямую запаять контакты на датчик.

Если вы планируете использовать датчик за пределами квартиры, стоит дополнительно задуматься о защите контактов от грязи и прямого попадания солнечных лучей. Возможно, стоит подумать о корпусе или нанесении защитного покрытия непосредственно на контакты датчика уровня влажности и проводники (смотрите на рисунок ниже).

Датчик уровня влажности почвы с нанесенным защитным покрытием на контактах и изолированными проводниками для подключения:

Проблема недолговечности датчика уровня влажности почвы

Один из недостатков датчиков подобного типа - недолговечность их чувствительных элементов. К примеру, компания Sparkfun решает эту проблему, используя дополнительное покрытие (Electroless Nickel Immersion Gold). Второй вариант продления срока действия сенсора - подавать на него питание непосредственно при снятии показаний. При использовании Arduino, все ограничивается подачей сигнала HIGH на пин, к которому подключен датчик. Если вы хотите запитать датчик большим напряжением чем предоставляет Arduino, всегда можно использовать дополнительный транзистор.

Контроль уровня влажности почвы - пример проекта

В приведенном ниже проекте использованы датчик уровня влажности, аналог платы Arduino - RedBoard и LCD дисплей, на котором выводятся данные про уровень влажности почвы.

Датчик уровня влажности почвы компании SparkFun:

Красный проводник (VCC) подключается к 5 В на Arduino, черный - к земле (GND), зеленый - сигнал - к аналоговому пину 0 (A0). Если вы используете другой аналоговый пин на Arduino, не забудьте внести соответствующие изменения в скетч для микроконтроллера, представленный ниже.

LCD дисплей подключен к 5 В, земле и цифровому пину 2 (также можно изменить и внести изменения в код) для обмена данными с микроконтроллером по серийному протоколу связи.

Стоит отметить, что если вы хотите продлить срок службы вашего сенсора, можно подключить его питание к цифровому пину и питать его только при считывании данных, а после - отключать. Если запитывать датчик постоянно, его чувствительные элементы вскоре начнут ржаветь. Чем больше влажность почвы, тем быстрее будет проходить коррозия. Еще один вариант – нанести гипс на датчик. В результате влага будет поступать, но коррозия значительно замедляется.

Программа для Arduino

Скетч достаточно простой. Для передачи данных на LCD дисплей вам необходимо подключить библиотеку Software Serial library. Если у вас в ее нет, скачать можно здесь: Arduino GitHub

Дополнительные пояснения приведены в комментариях к коду:

// Пример использования датчика уровня влажности почвы с LCD дисплеем.

SoftwareSerial mySerial(3,2); // pin 2 = TX, pin 3 = RX (не используется)

int thresholdUp = 400;

int thresholdDown = 250;

int sensorPin = A0;

String DisplayWords;

int sensorValue;

mySerial.write(254);

mySerial.write(128);

// очистка дисплея:

mySerial.write(" ");

mySerial.write(" ");

// перемещение курсора к началу первой строки LCD дисплея:

mySerial.write(254);

mySerial.write(128);

// "Dry, Water it!"

mySerial.write(254);

mySerial.write(192);

mySerial.print(DisplayWords);

} else if (sensorValue >= thresholdUp){

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

mySerial.print(DisplayWords);

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

mySerial.print(DisplayWords);

В программе использованы различные минимальное и максимальное значения. В результате среднее значение может характеризовать влажность в зависимости от того, почва увлажняется или сушится. Если вы не хотите использовать это среднее значение, максимальное и минимальное значения можно принимать одинаковыми. Однако эксперименты показывают, что предложенный подход позволяет более точно характеризовать процессы, которые происходят в почве. Определенного точного среднего значения в реальных условиях не существует. Так что с выборкой диапазона можно поиграться. Если вас интересуют процессы, которые происходят в почве при взаимодействии с водой, почитайте тут, например: Wiki . Процессы достаточно сложные и интересные.

В любом случае, переменные вам надо настроить под собственные условия: тип почвы, необходимый уровень увлажнения. Так что тестируйте, экспериментируйте пока не определитесь с подходящими значениями.

После организации считывания данных с датчика уровня влажности и их отображения, проект можно развить дальше, организовав систему автоматического полива.

Датчик уровня влажности в составе автоматической системы полива на основании Arduino:

Для автоматизации полива нам понадобятся дополнительные детали: возможно, шкивы, зубчатые шестерни, двигатель, муфта, транзисторы, резисторы. Список зависит от вашего проекта. Ну все, что может попасться под руку в быту. Более детально один из примеров показан ниже:

Это один из множества вариантов установки двигателя для системы автоматического полива. Колесо можно установить непосредственно в воде. В таком случае при его быстром вращении, вода будет подаваться к растению. В общем, можете проявить фантазию.

Схема подключения двигателя постоянного тока () на примере копии Arduino от SparkFun приведена ниже:

Ниже приведен скетч для Arduino (по сути он такой же как и приведенный выше с небольшим дополнением для управления двигателем):

// В скетче считываются данные с датчика и отображается уровень влажности почвы

// если почва сухая, начинает работать двигатель

// Для работы с дисплеем используется библиотека softwareserial library

#include <SoftwareSerial.h>

// Подключите пин для обмена данными с использованием LCD дисплея по серийному протоколу RX к цифровому пину 2 Arduino

SoftwareSerial mySerial(3,2); // pin 2 = TX, pin 3 = RX (unused)

// Управляем двигателем с помощью пина 9.

// Этот пин должен обязательно поддерживать ШИМ-модуляцию.

const int motorPin = 9;

// Тут мы настраиваем некоторые константы.

// Настройка констант зависит от условий внешней среды, в которой используется датчик

int thresholdUp = 400;

int thresholdDown = 250;

// Настраиваем пин A0 на Arduino для работы с датчиком:

int sensorPin = A0;

pinMode(motorPin, OUTPUT); // устанавливаем пин, к которому подключен двигатель в качестве выхода

mySerial.begin(9600); // устанавливаем скорость обмена данными на 9600 baud

delay(500); // ждем пока дисплей прогрузится

// Здесь мы объявляем строку, в которой хранятся данные для отображения

// на жидкокристаллическом дисплее. Значения будут изменяться

// в зависимости от уровня влажности почвы

String DisplayWords;

// В переменной sensorValue хранится аналоговое значение датчика с пина А0

int sensorValue;

sensorValue = analogRead(sensorPin);

mySerial.write(128);

// очистка дисплея:

mySerial.write(" ");

mySerial.write(" ");

// перемещение курсора к началу первой строки LCD дисплея: mySerial.write(254);

mySerial.write(128);

// запись необходимой информации на дисплей:

mySerial.write("Water Level: ");

mySerial.print(sensorValue); //Использование.print вместо.write для значений

// Теперь мы проведем проверку уровня влажности по сравнению с заданными нами предварительно числовыми константами.

// Если значение меньше thresholdDown, отображаем слова:

// "Dry, Water it!"

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

DisplayWords = "Dry, Water it!";

mySerial.print(DisplayWords);

// запуск двигателя на небольших оборотах (0 – остановка, 255 – максимальная скорость):

analogWrite(motorPin, 75);

// Если значение не ниже thresholdDown надо провести проверку, не будет

// ли оно больше нашего thresholdUp и, если, больше,

// отобразить надпись "Wet, Leave it!":

} else if (sensorValue >= thresholdUp){

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

DisplayWords = "Wet, Leave it!";

mySerial.print(DisplayWords);

// выключение двигателя (0 – остановка, 255 – максимальная скорость):

analogWrite(motorPin, 0);

// Если полученное значение в диапазоне между минимальным и максимальным

// и почва была раньше влажной, а теперь сохнет,

// отображаем надпись "Dry, Water it!" (то есть, когда мы

// приближаемся к thresholdDown). Если почва была сухой, а теперь

//быстро увлажняется, отображаем слова "Wet, Leave it!" (то есть, когда мы

// приближаемся к thresholdUp):

// перемещение курсора к началу второй строки дисплея:

mySerial.write(254);

mySerial.write(192);

mySerial.print(DisplayWords);

delay(500); //Задержка в пол секунды между считываниями

Удачи вам в реализации автоматического полива ваших растений!

В статье рассмотрены основы работы с недорогими датчиками температуры и влажности серии DHT.

Эти сенсоры простые и медленные, но при этом отлично подходят для хобби-проектов на Arduino. Датчики DHT состоят из двух основных частей: ёмкостный датчик влажности и термистор. Также в корпусе установлен простенький чип для преобразования аналогового сигнала в цифровой. Считывать цифровой сигнал на выходе достаточно просто, можно использовать любой контроллер, не обязательно Arduino.

Технические характеристики DHT11 и DHT22

Существуют две версии сенсоров DHT. Выглядят они почти одинаково. Распиновка тоже одинаковая. Основные отличия - в технических характеристиках:

  • Очень дешевый.
  • Питание от 3 до 5В.
  • Рассчитан на измерение уровня влажности в диапазоне от 20% до 80%. При этом точность измерений находится в диапазоне 5%.
  • Измеряет температуру в диапазоне от 0 до 50 градусов с точностью плюс-минус 2%.
  • Частота измерений не более 1 Гц (одно измерение в секунду).
  • Размер корпуса: 15.5 мм x 12 мм x 5.5 мм.
  • Дешевый.
  • Питание от 3 до 5В.
  • Максимально потребляемый ток - 2.5мА при преобразовании (при запросе данных).
  • Рассчитан на измерение уровня влажности в диапазоне от 0% до 100%. При этом точность измерений находится в диапазоне 2%-5%.
  • Измеряет температуру в диапазоне от -40 до 125 градусов с точностью плюс-минус 0.5 градусов по Цельсию.
  • Частота измерений до 0.5 Гц (одно измерение за 2 секунды).
  • Размер корпуса: 15.1 мм x 25 мм x 7.7 мм.
  • 4 коннектора. Расстояние между соседними - 0.1".

Как видите, DHT22 более точный и имеет больший диапазон измеряемых значений. Оба датчика имеют по одному цифровому выходу. Запросы к ним можно отправлять не чаще чем один в секунду или две.

Подключение датчиков DHT к Arduino

Подключаются датчики легко. Так как у них достаточно длинные коннекторы 0.1", можно устанавливать их непосредственно на макетную или монтажную плату (смотрите на рисунке ниже).


Непосредственное подключение к Arduino тоже простое. На сенсоре 4 коннектора:

  • Питание (VCC) - от 3 до 5 В.
  • Вывод данных.
  • Не подключается.
  • Земля.

Коннектор 3 просто игнорируйте, он не подключается. Желательно подключить подтягивающий резистор на 10 кОм между питанием и сигналом. На Arduino есть встроенные резисторы, но их номинал 100кОм нам не подойдет.

На рисунке ниже приведена схема подключения DHT11 к Arduino. Подключите сигнал с датчика к пину 2, чтобы схема соответствовала примеру скетча, который приведен ниже. Этот пин можно изменить с соответствующими правками в коде.


Считывание данных с датчиков DHTxx

Для проверки скетча мы используем Arduino. Можно использовать любой другой микроконтроллер, который поддерживает тайминг в микросекундах.

В первой части статьи рассмотрим характеристики датчика температуры и влажности DHT11, научимся выводить значения в последовательный порт компьютера, во второй части усложним задачу и выведем показания на дисплей используя .

Компоненты для повторения (купить в Китае):

Основные технические характеристики:

Напряжение питания: 3 - 5В
. Определяемая влажность: 20 - 80% ± 5%
. Определяемая температура: 0 - 50º ± 2%
. Частота опроса: ≤ 1Гц
. Размеры: 30 x 14 x 6мм

Как мы видим, данные датчики не рассчитаны на работу в экстремальных условиях, однако их возможностей c головой хватит для осуществления большинства домашних и более серьезных поделок. Внутри датчика находится емкостной датчик влажности, термистор, и простенький аналогово-цифровой преобразователь значений температуры и влажности.

Подключение к Arduino

Модуль оборудован трех пиновым разъемом стандарта 2.54мм

G - Подключается к выводу GND

V - Подключается к выводу +5V

S - Подключается к цифровому выводу (в примере D4)

Подключив датчик к Arduino остается только залить скетч для работы. В приведенном ниже скетче мы будем измерять и отсылать данные о состоянии температуры и влажности последовательный в порт компьютера.

Библиотека необходимая для работы с модулем dht11

Её необходимо распаковать и добавить в папку "libraries" в папке с Arduino IDE. Не забывайте перезагрузить среду, если на момент добавления IDEшка была открыта.

Пример программного кода

#include // Добавляем библиотеку DHT11 dht11 DHT; #define DHT11_PIN 4 void setup (){ Serial .begin (9600); // Скорость работы порта Serial .println ("DHT TEST PROGRAM " ); // Выводим текст Serial .print ("LIBRARY VERSION: " ); // Выводим текст Serial .println (DHT11LIB_VERSION); Serial .println (); // Пустая строка } void loop (){ int chk; ; // Мониторинг ошибок chk = DHT.read (DHT11_PIN); // Чтение данных switch (chk){ case DHTLIB_OK: break ; case DHTLIB_ERROR_CHECKSUM: Serial .println ("Checksum error, \t" ); break ; case DHTLIB_ERROR_TIMEOUT: Serial .println ("Time out error, \t" ); break ; default : Serial .println ("Unknown error, \t" ); break ; } Serial .print ("Humidity = " ); Serial .print (DHT.humidity, 1); Serial .print (", Temp = " ); Serial .println (DHT.temperature,1); delay (1000); }

Открываем монитор порта. В него будут выводиться значения влажности и температуры.


Вывод значений на LCD I2C модуль

Выводить значения на компьютер это конечно отлично, однако в автономном устройстве не всегда позволительно. Как было написано вначале, во второй части статьи приведем пример вывода данных на ЖК дисплей, который в свою очередь управляется по интерфейсу I2C. Для подключения данного LCD модуля требуется всего 4 линии: + питания, земля, последовательная линия данных SDA (Serial DAta) и последовательная линия тактирования SCL (Serial CLock). Более подробно об основах работы с LCD I2C модулем вы сможете прочесть здесь.

Схема подключения будет выглядеть следующим образом.

В приведенном ниже скетче мы будем измерять и отсылать данные о состоянии температуры и влажности на ЖК дисплей.

Пример программного кода

//Тестировалось на Arduino IDE 1.0.5 #include // Добавляем необходимые библиотеки #include #include dht11 DHT; // Объявление переменной класса dht11 #define DHT11_PIN 4 // Датчик DHT11 подключен к цифровому пину номер 4 byte degree = // Битовая маска символа градуса { B00111, B00101, B00111, B00000, B00000, B00000, B00000, }; LiquidCrystal_I2C lcd(0x27,16,2); // Задаем адрес и размерность дисплея void setup () { lcd.init(); // Инициализация lcd lcd.backlight(); // Включаем подсветку lcd.createChar (1, degree); // Создаем символ под номером 1 } void loop () { // Выводим показания влажности и температуры lcd.setCursor (0, 0); // Устанавливаем курсор в начало 1 строки lcd.print ("Humidity = % " ); // Выводим текст lcd.setCursor (11, 0); lcd.print (DHT.humidity, 1); lcd.setCursor (0, 1); // Устанавливаем курсор в начало 2 строки lcd.print ("Temp = \1C " ); // Выводим текст, \1 - значок градуса lcd.setCursor (11, 1); lcd.print (DHT.temperature,1); int chk; ; // Мониторинг ошибок chk = DHT.read (DHT11_PIN); // Чтение данных switch (chk){ case DHTLIB_OK: break ; case DHTLIB_ERROR_CHECKSUM: lcd.clear (); lcd.print ("Checksum error" ); break ; case DHTLIB_ERROR_TIMEOUT: lcd.clear (); lcd.print ("Time out error" ); break ; default : lcd.clear (); lcd.print ("Unknown error" ); break ; } delay (1000); }

Купить в России