Каково устройство и назначение трансформатора. Что такое трансформатор – это устройство, способное изменять напряжение переменного тока

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Неизбежно приводит к определенным потерям. Для того чтобы снизить потери, в системе передачи применяется свойство трансформации. С этой целью электрический ток проходит через трансформаторную подстанцию, с помощью которой осуществляется повышение амплитуды напряжения, подаваемого в ЛЭП для дальнейшей транспортировки.

Конечная точка ЛЭП подключается к вводу удаленной подстанции. Здесь выполняется снижение напряжения, после чего электричество распределяется среди потребителей. На обеих подстанциях установлены силовые трансформаторы, устройство и принцип действия которых позволяет преобразовывать электроэнергию большой мощности. Они отличаются особенностями устройства и техническими характеристиками.

Основные детали и системы силового трансформатора

Металлический корпус предназначен для размещения внутри него электрического оборудования трансформатора. Он представляет собой герметичный бак с крышкой, заполненный трансформаторным маслом. Такой сорт масла имеет высокие диэлектрические качества, с его помощью отводится тепло от деталей, подверженных значительным токовым нагрузкам.

Охлаждение трансформатора осуществляется с помощью гидравлической системы. Залив и слив масла производится с использованием задвижек и вкручивающихся пробок. Отбор масла для химического анализа производится через запорный вентиль, расположенный в нижней части бака.

Циркуляция масла в силовом трансформаторе происходит по двум контурам - внешнему и внутреннему. В состав внешнего контура входит радиатор, состоящий из верхнего и нижнего коллекторов, соединенных между собой металлическими трубками. Нагретое масло проходит через магистрали охладителя, остывает и вновь поступает в бак. Внутри бака масло может циркулировать естественным путем или принудительно под действием давления, создаваемого насосами. Теплообмен значительно улучшается за счет специальных гофр, устанавливаемых на поверхности бака.

Важнейшим элементом силового трансформатора является его электрическая схема . Все ее элементы размещаются внутри корпуса. Верхняя и нижняя балки составляют остов, на котором крепятся все остальные детали. В состав схемы входит магнитопровод, обмотки высокого и низкого напряжения, высоковольтные и низковольтные отводы, регулировочные ответвления обмоток. В нижней части располагаются вводы высокого и низкого напряжения.

Основной функцией магнитопровода является снижение потерь магнитного потока, проходящего через обмотки. Для его изготовления используется специальные сорта электротехнической стали. Ток нагрузки протекает через обмотки фаз. Изоляция витков выполняется специальными сортами хлопчатобумажной ткани или кабельной бумаги. Механическая и электрическая прочность обмоточной изоляции повышается за счет пропитки поверхностей специальным лаком. Подключение обмоток может выполняться по схеме «звезда», «треугольник» или «зигзаг». Для концов каждой обмотки используются латинские символы.

Принцип действия и режимы работы

Силовые трансформаторы действуют по такому же принципу, как и обычные трансформаторные устройства. Во входную обмотку поступает электрический ток, колебания которого изменяются по времени. Это приводит к наведению в магнитопроводе изменяющегося магнитного поля. Далее изменяющийся магнитный поток проходит через витки второй обмотки, после чего в ней возникает электродвижущая сила.

Во время проверок и в процессе эксплуатации работа трансформатора может происходить в различных режимах:

  • Рабочий режим. В этом случае источник напряжения подключается к первичной обмотке, а нагрузка - к вторичной. Величина тока в каждой обмотке должна быть не более допустимого расчетного значения. В данном режиме обеспечивается устойчивое и надежное питание потребителей в течение длительного времени. В рабочем режиме может создаваться холостой ход и короткое замыкание с целью проверки характеристик трансформаторного устройства.
  • Холостой ход. Создается путем размыкания вторичной цепи, чтобы исключить протекание по ней тока. Данный режим позволяет определить коэффициент полезного действия, потери в стальных деталях, затраченные для намагничивания сердечника.
  • Режим короткого замыкания. В этом случае накоротко шунтируются выводы вторичной обмотки. На входе трансформатора напряжение оказывается заниженным до значения, при котором создается вторичный номинальный ток с постоянным значением. Данный способ позволяет установить потери в меди.
  • Аварийный режим. К нему относятся любые нарушения работы трансформатора, вызывающие отклонение рабочих показателей за пределы допустимого значения. Особую опасность представляет короткое замыкание, возникающее внутри обмоток. Для предотвращения последствий аварийного режима в силовых трансформаторах устанавливаются автоматические средства защиты и сигнализации. Они поддерживают нормальную работу первичной схемы и полностью отключают ее в случае неисправностей и аварийных ситуаций.

Защита силовых трансформаторов

В первую очередь необходимо постоянно контролировать уровень масла, циркулирующего внутри бака. На его температуру оказывает влияние целый комплекс различных факторов. В связи с этим происходит постоянное изменение объема и главной задачей становится поддержание уровня масла в установленных границах. Важную роль в этом играет использование расширительного бачка, компенсирующего все объемные отклонения. Кроме того, он позволяет вести наблюдения за текущим уровнем масла.

Данные о состоянии уровня снимаются с помощью маслоуказателя, подключаемого параллельно с расширительным бачком.

Силовые трансформаторы должны быть защищены от проникновения влаги, поскольку расширительный бак своей верхней частью плотно контактирует с окружающей средой. С этой целью устанавливается осушитель воздуха, создающий препятствия попаданию влаги в масло, что существенно снижает его диэлектрические свойства.

Важной составляющей масляной системы считается газовое реле, защищающее трансформатор от внутренних повреждений. Оно монтируется внутри трубопровода, который соединяет между собой основной и расширительный баки. Во время нагрева масло и органическая изоляция выделяют газы, попадающие в емкость газового реле, содержащую внутри чувствительный элемент.

В некоторых случаях может возникнуть аварийное повышение давления внутри бака. В целях защиты на крышке трансформатора выполняется монтаж выхлопной трубы. Ее нижний конец должен сообщаться с емкостью бака, а масло - поступать внутрь до необходимого уровня в расширителе. Над расширителем возвышается верхняя часть трубы, которая отводится в сторону и незначительно загибается вниз. Ее конец герметично закрывает стеклянная предохранительная мембрана, разрушающаяся в случае аварийного повышения давления.

Силовые трансформаторы, имеющие обмотку высокого напряжения свыше 1000 В, оборудуются релейной защитой от основных повреждений и неисправностей. Непосредственными защитными устройствами являются вторичные реле прямого или косвенного действия. Их подключение осуществляется не напрямую, а через измерительные трансформаторы напряжения и тока.

Монтаж и дальнейшая эксплуатация силовых трансформаторов

Большинство конструкций силовых трансформаторов обладают значительным весом. Поэтому для их транспортировки к месту монтажа используется специальный транспорт. Оборудование поставляется полностью собранным и готовым к подключению.

Монтаж силового трансформатора выполняется на заранее подготовленном фундаменте или в специальном помещении. Во избежание воздушных мешков под крышкой бака в процессе установки, под катки со стороны расширителя подкладываются стальные пластинки. Их толщина должна обеспечивать подъем 1% с узкой и 1,5% с широкой стороны трансформатора. Длина прокладок составляет не менее 150 мм. При массе устройства до 2 тонн установка выполняется непосредственно на фундамент. Корпус в обязательном порядке соединяется с системой заземления.

Перед началом установки силовые трансформаторы проходят испытания в лабораторных условиях. В это время измеряется коэффициент трансформации, проверяется качество соединений, изоляции, а также соответствие трансформаторного масла.

Релейная защита силового трансформатора

Трансформатор представляет собой статический электромагнитный аппарат с двумя (или больше) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

При передаче электрической энергии от электростанции к потребителям сила тока в линии обуславливает потери энергии в этой линии и расход цветных металлов на ее устройство. Если при одной и той же передаваемой мощности увеличить напряжение, то сила тока в такой же мере уменьшится, а следовательно, можно будет применить провода с меньшим поперечным сечением. Это сократит расход цветных металлов при устройстве линии электропередачи и снизит потери энергии в ней.

Электрическая энергия вырабатывается на электростанциях синхронными генераторами при напряжении 11-20 кВ; в отдельных случаях применяют напряжение 30-35 кВ. Хотя такие напряжения являются слишком высокими для их непосредственного использования в производстве и для бытовых нужд, они недостаточны для экономичной передачи электроэнергии на большие расстояния. Дальнейшее повышение напряжения в линиях электропередачи (до 750 кВ и более) осуществляют повышающими трансформаторами.

Приемники электрической энергии (лампы накаливания, электродвигатели и т. д.) из соображений безопасности рассчитывают на более низкое напряжение (110-380 В). Кроме того, изготовление электрических аппаратов, приборов и машин на высокое напряжение связано со значительными конструктивными сложностями, так как токоведущие части этих устройств при высоком напряжении требуют усиленной изоляции. Поэтому высокое напряжение, при котором происходит передача энергии, не может быть непосредственно использовано для питания приемников и подводится к ним через понижающие трансформаторы.

Электрическую энергию переменного тока по пути от электростанции, где она вырабатывается, до потребителя приходится трансформировать 3-4 раза. В распределительных сетях понижающие трансформаторы нагружаются неодновременно и не на полную мощность. Поэтому полная мощность трансформаторов, используемых для передачи и распределения электроэнергии, в 7-8 раз больше мощности генераторов, устанавливаемых на электростанциях.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем с использованием магнитопровода.

Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного - понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие - для ее распределения между потребителями.

В зависимости от назначения различают силовые трансформаторы, измерительные трансформаторы напряжения и трансформаторы тока

Силовые трансформаторы преобразуют переменный ток одного напряжения в переменный ток другого напряжения для питания электроэнергией потребителей. В зависимости от назначения они могут быть повышающими или понижающими. В распределительных сетях применяют, как правило, трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в напряжение 0,4 кВ. (Основные типы трансформаторов ТМГ, ТМЗ, ТМФ, ТМБ, ТМЭ, ТМГСО, ТМ, ТМЖ, ТДТН, ТРДН, ТСЗ, ТСЗН, ТСЗГЛ и другие.)

Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях. Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений.

Трансформаторы напряжения используются как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализаций и релейной защиты линий электропередачи от замыкания на землю.

В ряде случаев трансформаторы напряжения могут быть использованы как маломощные понижающие силовые трансформаторы или как повышающие испытательные трансформаторы (для испытания изоляции электрических аппаратов).

На рынке России представлены следующие виды трансформаторов напряжения:

3НОЛ.06, ЗНОЛП, ЗНОЛПМ, ЗНОЛ.01ПМИ, 3хЗНОЛ.06, 3хЗНОЛП, 3хЗНОЛПМ, НОЛ.08, НОЛ.11-6.О5, НОЛ.12 ОМ3, ЗНОЛ.06-35 (ЗНОЛЭ-35), ЗНОЛ 35, НОЛ 35, НОЛ-35 III, НАМИТ-10 , ЗНИОЛ, ЗНИОЛ-10-1, ЗНИОЛ-10-П, ЗНИОЛ-20, ЗНИОЛ-20-П, ЗНИОЛ-35, ЗНИОЛ-35-П, ЗНИОЛ-35-1, НИОЛ -20, НИОЛ-35, НОЛ-СЭЩ -10, НОЛ-СЭЩ -10-1, НОЛ-СЭЩ-6, НОЛ-СЭЩ-6-1, НОЛ-СЭЩ-20, НОЛ-СЭЩ-35, 3хЗНОЛ-СЭЩ- 6, 3хЗНОЛ-СЭЩ -10, НАЛИ-СЭЩ-10, НАЛИ-СЭЩ-6, НТМИ 6, НТМИ 10, НАМИ 6, НАМИ 10, НАМИ 35, НАМИ 110, ЗНАМИТ-6, ЗНАМИТ-10, ЗНОМП 35, НОМ 6, НОМ 10, НОМ 35, НКФ 110, НКФ 150, НКФ 220 и другие.

У измерительных трансформаторов напряжения первичная обмотка 3000/√3, 6000/√3, 10000/√3, 13800/√3, 18000/√3, 24000/√3, 27000/√3, 35000/√3, 66000/√3, 110000/√3, 150000/√3, 220000/√3, 330000/√3, 400000/√3, 500000/√3, а вторичная 100/√3 или 110/√3.

Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.

Поставляются с классом точности: 0,5; 0,5S; 0,2; 0,2S.

Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

ВАЖНО! Измерительные трансформаторы тока поставляются со следующими коэффициентами трансформации: 5/5, 10/5, 15/5, 20/5, 30/5, 40/5, 50/5, 75/5, 100/5, 150/5, 200/5, 300/5, 400/5, 500/5, 600/5, 800/5, 1000/5, 1500/5, 2000/5, 2500/5, 3000/5, 5000/5, 8000/5, 10000/5.
На рынке России трансформаторы тока представлены следующими моделями:

ТОП-0,66, ТШП-0,66, ТОП-0,66-I, ТШП-0,66-I, ТШЛ-0,66, ТНШЛ-0,66, ТНШ-0,66, ТОЛ-10, ТЛО-10, ТОЛ-10-I, ТОЛ-10-М, ТОЛ-10-8, ТОЛ-10-IM, ТОЛ-10 III, ТШЛ-10, ТЛШ-10, ТПЛ-10-М, ТПОЛ-10, ТПОЛ-10М, ТПОЛ-10 III, ТЛ-10, ТЛ-10-М, ТПЛК-10, ТОЛК-6, ТОЛК-6-1, ТОЛК-10, ТОЛК-10-2, ТОЛК-10-1, ТОЛ-20, ТШЛ-20-I, ТПЛ-20, ТПЛ-35, ТОЛ-35, ТОЛ-35-III-IV, ТОЛ-35 II-7.2, ТЛК-35, ТВ, ТЛК-10, ТПЛ-10С, ТЛМ-10, ТШЛП-10, ТПК-10, ТВЛМ-10, ТВК-10, ТВЛМ-6, ТЛК-20, ТЛК-35-1, ТЛК-35-2, ТЛК-35-3, ТОЛ-СЭЩ 10, ТОЛ-СЭЩ-20, ТОЛ-СЭЩ-35, ТШЛ-СЭЩ 0,66, трансформаторы Ritz, ТПЛ-СЭЩ 10, ТЗЛК(Р)-СЭЩ 0,66, ТВ-СЭЩ-10, ТВ-СЭЩ-20, ТВ-СЭЩ-35, ТШЛ-СЭЩ-10, ТШЛ-СЭЩ-20, ТЗЛВ-СЭЩ-10 и другие.

Классификация трансформаторов напряжения

Трансформаторы напряжения различаются:

А) по числу фаз - однофазные и трехфазные;
б) по числу обмоток - двух-обмоточные, трех-обмоточные, четырех-обмоточные.
Пример 0,5/0,5S/10Р;
в) по классу точности, т. е. по допускаемым значениям погрешностей;
г) по способу охлаждения - трансформаторы с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);
д) по роду установки - для внутренней установки, для наружной установки и для комплектных распределительных устройств (КРУ).

Для напряжений до 6-10 кВ трансформаторы напряжения изготовляют сухими, т. е. с естественным воздушным охлаждением. Для напряжений выше 6-10 кВ применяют масляные трансформаторы напряжения.

Трансформаторы внутренней установки предназначены для работы при температуре окружающего воздуха от -40 до + 45°С с относительной влажностью до 80 %.

В однофазных трансформаторах напряжения на 6 к 10 кВ преимущественно применяется литая изоляция. Трансформаторы с литой изоляцией полностью или частично (одни обмотки) залиты изоляционной массой (эпоксидной смолой). Такие трансформаторы, предназначенные для внутренней установки, выгодно отличаются от масляных: имеют меньшие массу и габаритные размеры и почти не требуют ухода в эксплуатации.

Трехфазные двух-обмоточные трансформаторы напряжения имеют обычные трех-стержневые магнитопроводы, а трех-обмоточные - однофазные броневые.
Трехфазный трех-обмоточный трансформатор представляет собой группу из трех однофазных однополюсных единиц, обмотки которых соединены по соответствующей схеме. Трехфазные трех-обмоточные трансформаторы напряжения старой серии (до 1968-1969 г.) имели бронестержневые магнитопроводы. Трехфазный трансформатор меньше по массе и габаритам, чем группа из трех однофазных трансформаторов. При работе трехфазного трансформатора для резерва нужно иметь другой трансформатор на полную мощность
В масляных трансформаторах основной изолирующей и охлаждающей средой является трансформаторное масло.

Масляный трансформатор состоит из магнитопровода, обмоток, бака, крышки с вводами. Магнитопровод собирают из изолированных друг от друга (для уменьшения потерь на вихревые токи) листов холоднокатаной электротехнической стали. Обмотки изготовляют из медного или алюминиевого провода. Для регулирования напряжения обмотка ВН имеет ответвления, соединяющиеся с переключателем. В трансформаторах предусмотрено два вида переключении ответвлений: под нагрузкой - РПН (регулирование под нагрузкой) и без нагрузки, после отключения трансформатора от сети - ПБВ (переключение без возбуждения). Наиболее распространен второй способ регулирования напряжения как наиболее простой.

Кроме указанных трансформаторов с масляным охлаждением (Трансформатор ТМ) выпускаются трансформаторы в герметичном исполнении (ТМГ), в которых масло не сообщается с воздухом и, следовательно, исключается его ускоренное окисление и увлажнение. Масляные трансформаторы в герметичном исполнении полностью заполнены трансформаторным маслом и не имеют расширителя, а температурные изменения его объема при нагревании и охлаждении компенсируются изменением объема гофров стенок бака. Эти трансформаторы заполняются маслом под вакуумом, вследствие чего повышается электрическая прочность их изоляции.

Сухой трансформатор , так же как и масляный, состоит из магнитопровода, обмоток ВН и НН, заключенных в защитный кожух. Основной изолирующей и охлаждающей средой является атмосферный воздух. Однако воздух является менее совершенной изолирующей и охлаждающей средой, чем трансформаторное масло. Поэтому в сухих трансформаторах все изоляционные промежутки и вентиляционные каналы делают большими, чем в масляных.

Сухие трансформаторы изготовляют с обмотками со стеклоизоляцией класса нагревостойкости В (ТСЗ), а также с изоляцией на кремнийорганических лаках класса Н (ТСЗК). Для уменьшения гигроскопичности обмотки пропитывают специальными лаками. Применение в качестве изоляции обмоток стекловолокна или асбеста позволяет значительно повысить рабочую температуру обмоток и получить практически пожаробезопасную установку. Это свойство сухих трансформаторов дает возможность применять их для установки внутри сухих помещений в тех случаях, когда обеспечение пожарной безопасности установки является решающим фактором. Иногда сухие трансформаторы заменяют более дорогими и сложными в изготовлении совтоловыми.

Сухие трансформаторы имеют несколько большие габаритные размеры и массу (трансформатор ТСЗ) и меньшую перегрузочную способность, чем масляные, и используются для работы в закрытых помещениях с относительной влажностью не более 80%. К преимуществам сухих трансформаторов относят их пожаробезопасность (отсутствие масла), сравнительную простоту конструкции и относительно малые затраты на эксплуатацию.

Классификация трансформаторов тока

Трансформаторы тока классифицируются по различным признакам:

1. По назначению трансформаторы тока можно разделить на измерительные (ТОЛ-СЭЩ-10, ТЛМ-10), защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а так же со многими коэффициентами трансформации).

2. По роду установки различают трансформаторы тока:
а) для наружной установки, устанавливаются в открытых распределительных устройствах (ТЛК-35-2.1 УХЛ1);
б) для внутренней установки;
в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.;
г) накладные - одевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора);
д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся:
а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой);
б) одновитковые (стержневые);
в) шинные (ТШ-0,66).

4. По способу установки трансформаторы тока для внутренней и наружной установки разделяются:
а) проходные (ТПК-10, ТПЛ-СЭЩ-10);
б) опорные (ТЛК-10, ТЛМ-10).

5. По выполнению изоляции трансформаторы тока можно разбить на группы:
а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.);
б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией;
в) с заливкой компаундом.

6. По числу ступеней трансформации имеются трансформаторы тока:
а) одноступенчатые;
б) двухступенчатые (каскадные).

7. По рабочему напряжению различают трансформаторы:
а) на номинальное напряжение выше 1000 В;
б) на номинальное напряжение до 1000 В.

Сочетание различных классификационных признаков вводится в обозначение типа трансформаторов тока, состоящее из буквенной и цифровой частей.

Трансформаторы тока характеризуются номинальным током, напряжением, классом точности и конструктивным исполнением. На напряжении 6-10 кВ их изготовляют опорными и проходными с одной и двумя вторичными обмотками классов точности 0,2; 0,5; 1 и 3. Класс точности указывает предельную погрешность, вносимую трансформатором тока в результаты измерений. Трансформаторы классов точности 0,2, имеющие минимальную погрешность, используют для лабораторных измерений, 0,5 - для питания счетчиков, 1 и 3 - для питания токовых обмоток реле и приборов технических измерений. Для безопасной эксплуатации вторичные обмотки должны быть заземлены и не должны быть разомкнуты.
При монтаже распределительных устройств напряжением 6-10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В - с литой, хлопчатобумажной и фарфоровой.

Примером может служить ТОЛ-СЭЩ-10 опорный 2-х обмоточный трансформатор тока с литой изоляцией на номинальное напряжение 10 кВ конструктивного варианта исполнения 11, c вторичными обмотками:

Для подключения цепей измерения, с классом точности 0,5 и нагрузкой 10 ВА;
- для подключения цепей защиты, с классом точности 10Р и нагрузкой 15 ВА;

На номинальный первичный ток 150 Ампер, номинальный вторичный ток 5 Ампер, климатического исполнения «У» категории размещения 2 по ГОСТ 15150-69 при размещении заказа на производство у ЗАО «ВолгаЭнергоКомплект:

ТОЛ-СЭЩ-10-11-0,5/10Р-10/15-150/5 У2 - с номинальным первичным током - 150А, вторичным - 5А.

Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней электродвижущую силу (ЭДС). Если вторичную обмотку замкнуть на какой-либо приемник энергии, то под действием индуктируемой ЭДС по этой обмотке и через приемник энергии начнет протекать ток.

Одновременно в первичной обмотке также появится нагрузочный ток. Таким образом, электрическая энергия, трансформируясь, передается из первичной сети во вторичную при напряжении, на которое рассчитан приемник энергии, включенный во вторичную сеть.

В целях улучшения магнитной связи между первичной и вторичной обмотками их помещают на стальной магнитопровод. Обмотки изолируют как друг от друга, так и от магнитопровода. Обмотка более высокого напряжения называется обмоткой высшего напряжения (ВН), а обмотка более низкого напряжения - обмоткой низшего напряжения (НН). Обмотка, включенная в сеть источника электрической энергии, называется первичной; обмотка, от которой энергия подается к приемнику, - вторичной.

Обычно напряжения первичной и вторичной обмоток неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного - понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие - для ее распределения между потребителями.

В трех-обмоточных трансформаторах на магнитопровод помещают три изолированные друг от друга обмотки. Такой трансформатор, питаемый со стороны одной из обмоток, дает возможность получать два различных напряжения и снабжать электрической энергией две различные группы приемников. Кроме обмоток высшего и низшего напряжения трех-обмоточный трансформатор имеет обмотку среднего напряжения (СН).

Обмоткам трансформатора придают преимущественно цилиндрическую форму, выполняя их при малых токах из круглого медного изолированного провода, а при больших токах - из медных шин прямоугольного сечения.

Ближе к магнитопроводу располагают обмотку низшего напряжения, так как ее легче изолировать от него, чем обмотку высшего напряжения.

Обмотку низшего напряжения изолируют от стержня прослойкой из какого-либо изолировочного материала. Такую же изолирующую прокладку помещают между обмотками высшего и низшего напряжения.

При цилиндрических обмотках поперечному сечению стержня магнитопровода желательно придать круглую форму, чтобы в площади, охватываемой обмотками, не оставалось немагнитных промежутков. Чем меньше немагнитные промежутки, тем меньше длина витков обмоток, а следовательно, и масса меди при заданной площади сечения стального стержня.

Однако стержни круглого сечения изготовлять сложно. Магнитопровод набирают из тонких стальных листов, и для получения стержня круглого сечения понадобилось бы большое число стальных листов различной ширины, а это потребовало бы изготовления множества штампов. Поэтому в трансформаторах большой мощности стержень имеет ступенчатое поперечное сечение с числом ступеней не более 15-17. Количество ступеней сечения стержня определяется числом углов в одной четверти круга. Ярмо магнитопровода, т. е. та его часть, которая соединяет стержни, имеет также ступенчатое сечение.

Для лучшего охлаждения в магнитопроводах, а также в обмотках мощных трансформаторов устраивают вентиляционные каналы в плоскостях, параллельных и перпендикулярных плоскости стальных листов.
В трансформаторах малой мощности площадь сечения провода мала и выполнение обмоток упрощается. Магнитопроводы таких трансформаторов имеют прямоугольное сечение.

Номинальные данные трансформатора

Полезная мощность, на которую рассчитан трансформатор по условиям нагревания, т. е. мощность его вторичной обмотки при полной (номинальной) нагрузке называется номинальной мощностью трансформатора. Эта мощность выражается в единицах полной мощности - в вольтамперах (ВА) или киловольт-амперах (кВА). В ваттах или киловаттах выражается активная мощность трансформатора, т. е. та мощность, которая может быть преобразована из электрической в механическую, тепловую, химическую, световую и т. д. Сечения проводов обмоток и всех частей трансформатора, так же как и любого электротехнического аппарата или электрической машины, определяются не активной составляющей тока или активной мощностью, а полным током, протекающим по проводнику и, следовательно, полной мощностью. Все прочие величины, характеризующие работу трансформатора в условиях, на которые он рассчитан, также называются номинальными.

Каждый трансформатор снабжен щитком из материала, не подверженного атмосферным влияниям. Щиток прикреплен к баку трансформатора на видном месте и содержит его номинальные данные, которые нанесены травлением, гравировкой, выбиванием или другим способом, обеспечивающим долговечность знаков. На щитке трансформатора указаны следующие данные:

1. Марка завода-изготовителя.
2. Год выпуска.
3. Заводской номер.
4. Обозначение типа.
5. Номер стандарта, которому соответствует изготовленный трансформатор.
6. Номинальная мощность (кВА). (Для трехобмоточных указывают мощность каждой обмотки.)
7. Номинальные напряжения и напряжения ответвлений обмоток (В или кВ).
8. Номинальные токи каждой обмотки (А).
9. Число фаз.
10. Частота тока (Гц).
11. Схема и группа соединения обмоток трансформатора.
12. Напряжение короткого замыкания (%).
13. Род установки (внутренняя или наружная).
14. Способ охлаждения.
15. Полная масса трансформатора (кг или т).
16. Масса масла (кг или т).
17. Масса активной части (кг или т).
18. Положения переключателя, обозначенные на его приводе.

Для трансформатора с искусственным воздушным охлаждением дополнительно указана мощность его при отключенном охлаждении. Заводской номер трансформатора выбит также на баке под щитком, на крышке около ввода ВН фазы А и на левом конце верхней полки ярмовой балки магнитопровода. Условное обозначение трансформатора состоит из буквенной и цифровой частей. Буквы означают следующее:

Т - трехфазный,
О - однофазный,
М - естественное масляное охлаждение,
Д - масляное охлаждение с дутьем (искусственное воздушное и с естественной циркуляцией масла),
Ц - масляное охлаждение с принудительной циркуляцией масла через водяной охладитель,
ДЦ - масляное с дутьем и принудительной циркуляцией масла,
Г - грозоупорный трансформатор,
Н в конце обозначения - трансформатор с регулированием напряжения под нагрузкой,
Н на втором месте - заполненный негорючим жидким диэлектриком,
Т на третьем месте - трехобмоточный трансформатор.

Первое число, стоящее после буквенного обозначения трансформатора, показывает номинальную мощность (кВА), второе число - номинальное напряжение обмотки ВН (кВ). Так, тип ТМ 6300/35 означает трехфазный двухобмоточный трансформатор с естественным масляным охлаждением мощностью 6300 кВА и напряжением обмотки ВН 35 кВ. Буква А в обозначении типа трансформатора означает автотрансформатор. В обозначении трехобмоточных автотрансформаторов букву А ставят либо первой, либо последней. Если автотрансформаторная схема является основной (обмотки ВН и СН образуют автотрансформатор, а обмотка НН дополнительная), букву А ставят первой, если автотрансформаторная схема является дополнительной, букву А ставят последней.

Назначение и виды трансформатора.

Трансформатор представляет собой статическое электромагнитное оборудование, при работе которого происходит преобразование переменного тока с трансформацией напряжения. Т.е. этот аппарат позволяет его понижать или повышать. Установленные на электростанциях трансформаторы осуществляют на длительные расстояния при высоких напряжениях до 1150кВ. А уже непосредственно в местах потребления происходит понижение напряжения, в пределах 127-660В. При таких значениях обычно работают различные электрические потребители, которые устанавливаются на заводах, фабриках и в жилых домах. Электроизмерительные приборы, электросварка и другие элементы в цепи высокого напряжения также требуют использования трансформатора. Они бывают одно- и трехфазные, двух- и многообмоточные.

Существует несколько видов трансформаторов, каждый из которых определен своими функциями и предназначением. Силовой трансформатор преобразует электрическую энергию в сетях, которые предназначены для использования и приема этой энергии. служит измерением больших токов в устройствах электрических систем. Трансформатор напряжения преобразует высокое напряжение в низкое. Автотрансформатор имеет электрическую и электромагнитную связь, за счет прямого соединения первичной и вторичной обмотки. Импульсный трансформатор преобразует импульсные сигналы. отличается тем, что первичная и вторичная обмотки не связаны друг с другом электрически. Вкратце говоря, во всех видах принцип работы трансформатора чем-то схож. Еще можно выделить гидротрансформатор, принцип работы которого заключается в передаче крутящего момента к коробке передач от двигателя автомобиля. Это устройство позволяет бесступенчато изменять частоту вращения и крутящий момент.

Устройство и принцип действия трансформатора.

Принцип работы трансформатора заключается в проявлении электромагнитной индукции. Это устройство состоит из магнитопровода и двух обмоток, которые расположены на нем. К одной подается электроэнергия, а ко второй подключаются потребители. Как уже указывалось выше, эти обмотки называются первичной и вторичной, соответственно. Магнитопровод выполнен из электротехнической элементы которого изолированы лаком. Его часть, на которой располагаются обмотки, называется стержнем. И именно такая конструкция получила большее распространение, т.к. обладает рядом достоинств - простая изоляция обмоток, простота ремонта, хорошие условия охлаждения. Как видно, принцип работы трансформатора не так уж и сложен.

Существуют еще трансформаторы броневой конструкции, которая значительно уменьшает их габариты. Чаще всего это бывают однофазные трансформаторы. В таком оборудовании боковые ярма играют защитную роль обмотки от механических повреждений. Это очень важный фактор, т.к. малогабаритные трансформаторы не имеют кожуха и находятся с остальным оборудованием в общем месте. чаще всего выполняют с тремя стержнями. Бронестержневая конструкция применяется также в трансформаторах большой мощности. Хоть это и увеличивает расходы электроэнергии, но зато позволяет уменьшать высоту магнитопровода.

Различают трансформаторы по способу соединения стержней: стыковые и шихтованные. В стыковых стержни и ярма собираются раздельно и соединяются крепежными частями. А в шихтованных листы собираются внахлест. Шихтованные трансформаторы получили большее применение, т.к. у них намного выше механическая прочность.

Принцип работы трансформатора также зависит от обмотки, которые бывают цилиндрическими, дисковыми и концентрическими. Оборудование большой и средней мощности имеют газовое реле.

Трансформатор - незаменимое устройство в электротехнике.

Без него энергосистема в ее нынешнем виде не могла бы существовать.

Присутствуют эти элементы и во многих электроприборах.

Желающим познакомиться с ними поближе предлагается данная статья, тема которой - трансформатор: принцип работы и виды приборов, а также их назначение.

Так называют устройство, изменяющее величину переменного электрического напряжения. Существуют разновидности, способные менять и его частоту.

Таким аппаратами оснащают многие приборы, также они применяются в самостоятельном виде.

Например, установки, повышающие напряжение для передачи тока по электромагистралям.

Генерируемое электростанцией напряжение они поднимают до 35 – 750 кВ, что дает двойную выгоду:

  • уменьшаются потери в проводах;
  • требуются провода меньшего сечения.

В городских электросетях напряжение снова уменьшается до величины в 6,1 кВ, опять же с использованием . В распределительных сетях, раздающих электричество потребителям, напряжение понижают до 0,4 кВ (это привычные нам 380/).

Принцип работы

Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.

Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.

Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.

Как работает трансформатор

При протекании через катушку параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.

На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:

Кт = W1 / W2 = U1 / U2,

  • W1 и W2 - количество витков в первичной и вторичной обмотках;
  • U1 и U2 - напряжение на их выводах.

Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке - трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.

Большой силовой трансформатор

Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:

P1 = P2,

где Р1 и Р2 - мощность тока в обмотках.

Поскольку P = U * I , получим:

  • U1 * I1 = U2 * I2;
  • I1 = I2 * (U2 / U1) = I2 / Кт.

Это означает:

  • в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
  • с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.

Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.

Конструкция

Трансформаторные обмотки надевают на магнитопровод - деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.

Под действием переменного магнитного поля в магнитопроводе также генерируются токи - они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.

На магнитопроводе катушки располагают двояко:

  • рядом;
  • наматывают одну поверх другой.

Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.

Конструкция трансформатора

На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:

  1. рассеивание магнитного поля;
  2. нагрев проводов и магнитопровода;
  3. гистерезис.

Потери на гистерезис - это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.

Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.

Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:

  • холостого хода;
  • короткозамкнутый;
  • с нагрузкой.

В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.

Режим холостого хода

Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.

Такой режим позволяет определить:

  • КПД устройства;
  • коэффициент трансформации;
  • потери в магнитопроводе (на языке профессионалов - потери в стали).

Схема трансформатора в режиме холостого хода

Короткозамкнутый режим

Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.

Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.

Режим с нагрузкой

В этом состоянии к выводам вторичной обмотки подключен потребитель.

Охлаждение

В процессе работы трансформатор греется.

Применяют три способа охлаждения:

  1. естественное: для маломощных моделей;
  2. принудительное воздушное (обдув вентилятором): модели средней мощности;
  3. мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).

Прибор с масляным охлаждением

Виды трансформаторов

Аппараты классифицируются по назначению, типу магнитопровода и мощности.

Силовые трансформаторы

Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.

Автотрансформатор

У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов - при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.
  • Повышенный КПД . Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
  • Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).

Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.

Трансформатор тока

Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).

Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую – с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.

Трансформатор тока

Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями - почти короткое замыкание. У большинства токовых величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.

Импульсный трансформатор

Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.

Сварочный трансформатор

Данное устройство:

  • понижает напряжение;
  • рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.

Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.

Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.

Сварочный трансформатор ТДМ 70-460

На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:

  • выпрямляется посредством диодного моста;
  • в инверторе - управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами - снова становится переменным, но уже с частотой 60 – 80 кГц.

Потому эти сварочные аппараты такие легкие и небольшие.

Также устроены блоки питания импульсного типа, например, в ПК.

Разделительный трансформатор

В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.

Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.

В быту такой способ подключения электроприборов уместен во влажных помещениях- в ванных и пр.

Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.

Магнитопроводы

Бывают трех видов:

  1. Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
  2. Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
  3. Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.

Мощность

Мощность принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:
  • маломощные: менее 100 ВА;
  • средней мощности: несколько сотен ВА;

Существуют установки большой мощности, измеряемой в тысячах ВА.

Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.

Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.