Мультивибратор на полевых транзисторах. Описание схемы мультивибратора на полевых транзисторах Несимметричный мультивибратор на импортных транзисторах схема

В данной статье расскажем про мультивибратор, как он работает, способы подключения нагрузки на мультивибратор и расчёт транзисторного симметричного мультивибратора.

Мультивибратор — это простой генератор прямоугольных импульсов, который работает в режиме автогенератора. Для его работы необходимо лишь питание от батареи, или другого источника питания. Рассмотрим самый простой симметричный мультивибратор на транзисторах. Схема его представлена на рисунке. Мультивибратор может быть усложнён в зависимости от необходимых выполняемых функций, но все элементы, представленные на рисунке, являются обязательными, без них мультивибратор работать не будет.

Работа симметричного мультивибратора основана на зарядно-разрядных процессах конденсаторов, образующих совместно с резисторами RC-цепочки.

О том, как работают RC-цепочки, я писал ранее в своей статье Конденсатор , которую вы можете почитать на моём сайте. На просторах интернета если и находишь материал о симметричном мультивибраторе, то он излагается кратко, и не доходчиво. Это обстоятельство не позволяет начинающим радиолюбителям что-либо понять, а только помогает опытным электронщикам что-либо вспомнить. По просьбе одного из посетителей моего сайта я решил исключить этот пробел.

Как работает мультивибратор?

В начальный момент подачи питания конденсаторы С1 и С2 разряжены, поэтому их сопротивление току мало. Малое сопротивление конденсаторов приводит к тому, что происходит «быстрое» открывание транзисторов, вызванное протеканием тока:

— VT2 по пути (показано красным цветом): «+ источника питания > резистор R1 > малое сопротивление разряженного С1 > базово-эмиттерный переход VT2 > — источника питания»;

— VT1 по пути (показано синим цветом): «+ источника питания > резистор R4 > малое сопротивление разряженного С2 > базово-эмиттерный переход VT1 > — источника питания».

Это является «неустановившимся» режимом работы мультивибратора. Длится он в течение очень малого времени, определяемого лишь быстродействием транзисторов. А двух абсолютно одинаковых по параметрам транзисторов, не существует. Какой транзистор откроется быстрее, тот и останется открытым — «победителем». Предположим, что на нашей схеме это оказался VT2. Тогда, через малое сопротивление разряженного конденсатора С2 и малое сопротивление коллекторно-эмиттерного перехода VT2, база транзистора VT1 окажется замкнута на эмиттер VT1. В результате транзистор VT1 будет вынужден закрыться — «стать побеждённым».

Поскольку транзистор VT1 закрыт, происходит «быстрый» заряд конденсатора С1 по пути: «+ источника питания > резистор R1 > малое сопротивление разряженного С1 > базово-эмиттерный переход VT2 > — источника питания». Этот заряд происходит почти до напряжения источника питания.

Одновременно происходит заряд конденсатора С2 током обратной полярности по пути: «+ источника питания > резистор R3 > малое сопротивление разряженного С2 > коллекторно-эмиттерный переход VT2 > — источника питания». Длительность заряда определяется номиналами R3 и С2. Они и определяют время, при котором VT1 находится в закрытом состоянии.

Когда конденсатор С2 зарядится до напряжения приблизительно равным напряжению 0,7-1,0 вольт, его сопротивление увеличится и транзистор VT1 откроется напряжением приложенным по пути: «+ источника питания > резистор R3 > базово-эмиттерный переход VT1 > — источника питания». При этом, напряжение заряженного конденсатора С1, через открытый коллекторно-эмиттерный переход VT1 окажется приложенным к эмиттерно-базовому переходу транзистора VT2 обратной полярностью. В результате VT2 закроется, а ток, который ранее проходил через открытый коллекторно-эмиттерный переход VT2 побежит по цепи: «+ источника питания > резистор R4 > малое сопротивление С2 > базово-эмиттерный переход VT1 > — источника питания». По этой цепи произойдёт быстрый перезаряд конденсатора С2. С этого момента начинается «установившийся» режим автогенерации.

Работа симметричного мультивибратора в «установившемся» режиме генерации

Начинается первый полупериод работы (колебания) мультивибратора.

При открытом транзисторе VT1 и закрытом VT2, как я только что написал, происходит быстрый перезаряд конденсатора С2 (от напряжения 0,7…1,0 вольта одной полярности, до напряжения источника питания противоположной полярности) по цепи: «+ источника питания > резистор R4 > малое сопротивление С2 > базово-эмиттерный переход VT1 > — источника питания». Кроме того, происходит медленный перезаряд конденсатора С1 (от напряжения источника питания одной полярности, до напряжения 0,7…1,0 вольта противоположной полярности) по цепи: «+ источника питания > резистор R2 > правая обкладка С1 >левая обкладка С1 > коллекторно-эмиттерный переход транзистора VT1 > — -источника питания».

Когда, в результате перезаряда С1, напряжение на базе VT2 достигнет значения +0,6 вольта относительно эмиттера VT2, транзистор откроется. Поэтому, напряжение заряженного конденсатора С2, через открытый коллекторно-эмиттерный переход VT2 окажется приложенным к эмиттерно-базовому переходу транзистора VT1 обратной полярностью. VT1 закроется.

Начинается второй полупериод работы (колебания) мультивибратора.

При открытом транзисторе VT2 и закрытом VT1 происходит быстрый перезаряд конденсатора С1 (от напряжения 0,7…1,0 вольта одной полярности, до напряжения источника питания противоположной полярности) по цепи: «+ источника питания > резистор R1 > малое сопротивление С1 > базо-эмиттерный переход VT2 > — источника питания». Кроме того, происходит медленный перезаряд конденсатора С2 (от напряжения источника питания одной полярности, до напряжения 0,7…1,0 вольта противоположной полярности) по цепи: «правая обкладка С2 > коллекторно-эмиттерный переход транзистора VT2 > — источника питания > + источника питания > резистор R3 > левая обкладка С2». Когда напряжение на базе VT1 достигнет значения +0,6 вольта относительно эмиттера VT1, транзистор откроется. Поэтому, напряжение заряженного конденсатора С1, через открытый коллекторно-эмиттерный переход VT1 окажется приложенным к эмиттерно-базовому переходу транзистора VT2 обратной полярностью. VT2 закроется. На этом, второй полупериод колебания мультивибратора заканчивается, и снова начинается первый полупериод.

Процесс повторяется до момента отключения мультивибратора от источника питания.

Способы подключения нагрузки к симметричному мультивибратору

Прямоугольные импульсы снимаются с двух точек симметричного мультивибратора – коллекторов транзисторов. Когда на одном коллекторе присутствует «высокий» потенциал, то на другом коллекторе – «низкий» потенциал (он отсутствует), и наоборот – когда на одном выходе «низкий» потенциал, то на другом — «высокий». Это наглядно показано на временном графике, изображённом ниже.

Нагрузка мультивибратора должна подключаться параллельно одному из коллекторных резисторов, но ни в коем случае не параллельно транзисторному переходу коллектор-эмиттер. Нельзя шунтировать транзистор нагрузкой. Если это условие не выполнять, то как минимум — изменится длительность импульсов, а как максимум – мультивибратор не будет работать. На рисунке ниже показано, как подключить нагрузку правильно, а как не надо это делать.

Для того, чтобы нагрузка не влияла на сам мультивибратор, она должна иметь достаточное входное сопротивление. Для этого обычно применяют буферные транзисторные каскады.

На примере показано подключение низкоомной динамической головки к мультивибратору . Добавочный резистор повышает входное сопротивление буферного каскада, и тем самым исключает влияние буферного каскада на транзистор мультивибратора. Его значение должно не менее, чем в 10 раз превышать значение коллекторного резистора. Подключение двух транзисторов по схеме «составного транзистора» значительно усиливает выходной ток. При этом, правильным является подключение базово-эмиттерной цепи буферного каскада параллельно коллекторному резистору мультивибратора, а не параллельно коллекторно-эмиттерному переходу транзистора мультивибратора.

Для подключения к мультивибратору высокоомной динамической головки буферный каскад не нужен. Головка подключается вместо одного из коллекторных резисторов. Должно выполняться единственное условие – ток, идущий через динамическую головку не должен превышать максимальный ток коллектора транзистора.

Если вы хотите подключить к мультивибратору обычные светодиоды – сделать «мигалку», то для этого буферные каскады не требуются. Их можно подключить последовательно с коллекторными резисторами. Связано это с тем, что ток светодиода мал, и падение напряжения на нём во время работы не более одного вольта. Поэтому они не оказывают никакого влияния на работу мультивибратора. Правда это не относится к сверхярким светодиодам, у которых и рабочий ток выше, и падение напряжения может быть от 3,5 до 10 вольт. Но в этом случае есть выход – увеличить напряжение питания и использовать транзисторы с большой мощностью, обеспечивающей достаточный ток коллектора.

Обратите внимание, что оксидные (электролитические) конденсаторы подключаются плюсами к коллекторам транзисторов. Связано это с тем, что на базах биполярных транзисторов напряжение не поднимается выше 0,7 вольта относительно эмиттера, а в нашем случае эмиттеры – это минус питания. А вот на коллекторах транзисторов напряжение изменяется почти от нуля, до напряжения источника питания. Оксидные конденсаторы не способны выполнять свою функцию при их подключении обратной полярностью. Естественно, если вы будете применять транзисторы другой структуры (не N-P-N, a P-N-P структуры), то кроме изменения полярности источника питания, необходимо развернуть светодиоды катодами «вверх по схеме», а конденсаторы – плюсами к базам транзисторов.

Разберёмся теперь, какие параметры элементов мультивибратора задают выходные токи и частоту генерации мультивибратора?

На что влияют номиналы коллекторных резисторов? Я встречал в некоторых бездарных интернетовских статьях, что номиналы коллекторных резисторов незначительно, но влияют на частоту мультивибратора. Всё это полная чушь! При правильном расчёте мультивибратора, отклонение значений этих резисторов более чем в пять раз от расчётного, не изменит частоты мультивибратора. Главное, чтобы их сопротивление было меньше базовых резисторов, потому, что коллекторные резисторы обеспечивают быстрый заряд конденсаторов. Но зато, номиналы коллекторных резисторов являются главными для расчёта потребляемой мощности от источника питания, значение которой не должно превышать мощность транзисторов. Если разобраться, то при правильном подключении они даже на выходную мощность мультивибратора прямого влияния не оказывают. А вот длительность между переключениями (частота мультивибратора) определяется «медленным» перезарядом конденсаторов. Время перезаряда определяется номиналами RC цепочек – базовых резисторов и конденсаторов (R2C1 и R3C2).

Мультивибратор, хоть и называется симметричным, это относится только к схемотехнике его построения, а вырабатывать он может как симметричные, так и не симметричные по длительности выходные импульсы. Длительность импульса (высокого уровня) на коллекторе VT1 определяется номиналами R3 и C2, а длительность импульса (высокого уровня) на коллекторе VT2 определяется номиналами R2 и C1.

Длительность перезаряда конденсаторов определяется простой формулой, где Тау – длительность импульса в секундах, R – сопротивление резистора в Омах, С – ёмкость конденсатора в Фарадах:

Таким образом, если вы уже не забыли написанное в этой статье на пару абзацев ранее:

При равенстве R2=R3 и С1=С2 , на выходах мультивибратора будет «меандр» — прямоугольные импульсы с длительностью равной паузам между импульсами, который вы видите на рисунке.

Полный период колебания мультивибратора – T равен сумме длительностей импульса и паузы:

Частота колебаний F (Гц) связана с периодом Т (сек) через соотношение:

Как правило, в интернете если и есть какие либо расчёты радиоцепей, то они скудные. Поэтому произведём расчёт элементов симметричного мультивибратора на примере .

Как и любые транзисторные каскады, расчёт необходимо вести с конца — выхода. А на выходе у нас стоит буферный каскад, потом стоят коллекторные резисторы. Коллекторные резисторы R1 и R4 выполняют функцию нагрузки транзисторов. На частоту генерации коллекторные резисторы никакого влияния не оказывают. Они рассчитываются исходя из параметров выбранных транзисторов. Таким образом, сначала рассчитываем коллекторные резисторы, потом базовые резисторы, потом конденсаторы, а затем и буферный каскад.

Порядок и пример расчёта транзисторного симметричного мультивибратора

Исходные данные:

Питающее напряжение Uи.п. = 12 В .

Необходимая частота мультивибратора F = 0,2 Гц (Т = 5 секунд) , причём длительность импульса равна 1 (одной) секунде.

В качестве нагрузки используется автомобильная лампочка накаливания на 12 вольт, 15 ватт .

Как вы догадались, мы будем рассчитывать «мигалку», которая будет мигать один раз за пять секунд, а длительность свечения – 1 секунда.

Выбираем транзисторы для мультивибратора. Например, у нас имеются самые распространенные в Советские времена транзисторы КТ315Г .

Для них: Pmax=150 мВт; Imax=150 мА; h21>50 .

Транзисторы для буферного каскада выбирают исходя из тока нагрузки.

Для того, чтобы не изображать схему дважды, я уже подписал номиналы элементов на схеме. Их расчёт приводится далее в Решении.

Решение:

1. Прежде всего, необходимо понимать, что работа транзистора при больших токах в ключевом режиме наиболее безопасна для самого транзистора, чем работа в усилительном режиме. Поэтому расчёт мощности для переходного состояния в моменты прохождения переменного сигнала, через рабочую точку «В» статического режима транзистора — перехода из открытого состояния в закрытое и обратно проводить нет необходимости. Для импульсных схем, построенных на биполярных транзисторах, обычно рассчитывают мощность для транзисторов, находящихся в открытом состоянии.

Сначала определим максимальную рассеиваемую мощность транзисторов, которая должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике. Но для чего нам загонять мультивибратор в жёсткие рамки больших токов? Да и от повышенной мощности потребление энергии от источника питания будет большим, а пользы мало. Поэтому определив максимальную мощность рассеивания транзисторов, уменьшим её в 3 раза. Дальнейшее снижение рассеиваемой мощности нежелательно потому, что работа мультивибратора на биполярных транзисторах в режиме слабых токов – явление «не устойчивое». Если источник питания используется не только для мультивибратора, либо он не совсем стабильный, будет «плавать» и частота мультивибратора.

Определяем максимальную рассеиваемую мощность:Pрас.max = 0,8 * Pmax = 0,8 * 150мВт = 120мВт

Определяем номинальную рассеиваевую мощность: Pрас.ном. = 120 / 3 = 40мВт

2. Определим ток коллектора в открытом состоянии: Iк0 = Pрас.ном. / Uи.п. = 40мВт / 12В = 3,3мА

Примем его за максимальный ток коллектора.

3. Найдём значение сопротивления и мощности коллекторной нагрузки: Rк.общ=Uи.п./Iк0 = 12В/3,3мА= 3,6 кОм

Выбираем в существующем номинальном ряде резисторы максимально близкие к 3,6 кОм. В номинальном ряде резисторов имеется номинал 3,6 кОм, поэтому предварительно считаем значение коллекторных резисторов R1 и R4 мультивибратора: Rк = R1 = R4 = 3,6 кОм .

Мощность коллекторных резисторов R1 и R4 равна номинальной рассеиваемой мощности транзисторов Pрас.ном. = 40 мВт. Используем резисторы мощностью, превышающей указанную Pрас.ном. — типа МЛТ-0,125.

4. Перейдём к расчёту базовых резисторов R2 и R3 . Их номинал находят исходя из коэффициента усиления транзисторов h21. При этом, для надёжной работы мультивибратора значение сопротивления должно быть в пределах: в 5 раз больше сопротивления коллекторных резисторов, и меньше произведения Rк * h21.В нашем случае Rmin = 3,6 * 5 = 18 кОм, а Rmax = 3,6 * 50 = 180 кОм

Таким образом, значения сопротивлений Rб (R2 и R3) могут находиться в пределах 18…180 кОм. Предварительно выбираем среднее значение = 100 кОм. Но оно не окончательно, так как нам необходимо обеспечить требуемую частоту мультивибратора, а как я писал ранее, частота мультивибратора напрямую зависит от базовых резисторов R2 и R3, а также от ёмкости конденсаторов.

5. Вычислим ёмкости конденсаторов С1 и С2 и при необходимости пересчитаем значения R2 и R3 .

Значения ёмкости конденсатора С1 и сопротивления резистора R2 определяют длительность выходного импульса на коллекторе VT2. Именно во время действия этого импульса наша лампочка должна загораться. А в условии было задана длительность импульса 1 секунда.

определим ёмкость конденсатора: С1 = 1сек / 100кОм = 10 мкФ

Конденсатор, ёмкостью 10 мкФ имеется в номинальном ряде, поэтому он нас устраивает.

Значения ёмкости конденсатора С2 и сопротивления резистора R3 определяют длительность выходного импульса на коллекторе VT1. Именно во время действия этого импульса на коллекторе VT2 действует «пауза» и наша лампочка не должна светиться. А в условии был задан полный период 5 секунд с длительностью импульса 1 секунда. Следовательно, длительность паузы равна 5сек – 1сек = 4 секунды.

Преобразовав формулу длительности перезаряда, мы определим ёмкость конденсатора: С2 = 4сек / 100кОм = 40 мкФ

Конденсатор, ёмкостью 40 мкФ отсутствует в номинальном ряде, поэтому он нас не устраивает, и мы возьмём максимально близкий к нему конденсатор ёмкостью 47 мкФ. Но как вы понимаете, изменится и время «паузы». Чтобы этого не произошло, мы пересчитаем сопротивление резистора R3 исходя из длительности паузы и ёмкости конденсатора С2: R3 = 4сек / 47 мкФ = 85 кОм

По номинальному ряду, ближайшее значение сопротивления резистора равно 82 кОм.

Итак, мы получили номиналы элементов мультивибратора:

R1 = 3,6 кОм, R2 = 100 кОм, R3 = 82 кОм, R4 = 3,6 кОм, С1 = 10 мкФ, С2 = 47 мкФ .

6. Рассчитаем номинал резистора R5 буферного каскада .

Сопротивление добавочного ограничительного резистора R5 для исключения влияния на мультивибратор выбирается не менее чем в 2 раза больше сопротивления коллекторного резистора R4 (а в некоторых случаях и более). Его сопротивление вместе с сопротивлением эмиттерно-базовых переходов VT3 и VT4 в этом случае не будет влиять на параметры мультивибратора.

R5 = R4 * 2 = 3,6 * 2 = 7,2 кОм

По номинальному ряду ближайший резистор равен 7,5 кОм.

При номинале резистора R5 = 7,5 кОм, ток управления буферным каскадом будет равен:

Iупр. = (Uи.п. – Uбэ) / R5 = (12в – 1,2в) / 7,5кОм = 1,44 мА

Кроме того, как я писал ранее, номинал коллекторной нагрузки транзисторов мультивибратора не влияет на его частоту, поэтому если у вас нет такого резистора, то вы можете его заменить на другой «близкий» номинал (5 … 9 кОм). Лучше, если это будет в сторону уменьшения, чтобы не было падения управляющего тока на буферном каскаде. Но учтите, что добавочный резистор является дополнительной нагрузкой транзистора VT2 мультивибратора, поэтому ток, идущий через этот резистор, складывается с током коллекторного резистора R4 и является нагрузочным для транзистора VT2: Iобщ = Iк + Iупр. = 3,3мА + 1,44мА = 4,74мА

Общая нагрузка на коллектор транзистора VT2 в пределах нормы. В случае её превышения максимального тока коллектора указанного по справочнику и умноженное на коэффициент 0,8 , увеличьте сопротивление R4 до достаточного снижения тока нагрузки, либо используйте более мощный транзистор.

7. Нам необходимо обеспечить ток на лампочке Iн = Рн / Uи.п. = 15Вт / 12В = 1,25 А

Но ток управления буферным каскадом равен 1,44мА. Ток мультивибратора необходимо увеличить на значение, равное отношению:

Iн / Iупр. = 1,25А / 0,00144А = 870 раз .

Как это сделать? Для значительного усиления выходного тока используют транзисторные каскады, построенные по схеме «составного транзистора». Первый транзистор обычно маломощный (мы будем использовать КТ361Г), он имеет наибольший коэфициент усиления, а второй должен обеспечивать достаточный ток нагрузки (возьмём не менее распространённый КТ814Б). Тогда их коэффициенты передачи h21 умножаются. Так, у транзистора КТ361Г h21>50, а у транзистора КТ814Б h21=40. А общий коэффициент передачи этих транзисторов, включённых по схеме «составного транзистора»: h21 = 50 * 40 = 2000 . Эта цифра больше, чем 870, поэтому этих транзисторов вполне достаточно для управления лампочкой.

Ну вот, собственно и всё!

РАДИОсигнал:

МУЛЬТИВИБРАТОР-1
Просто теория или теория по-простому

«МУЛЬТИ» - много, «ВИБРАТО» - вибрация, колебание, следовательно, «МУЛЬТИВИБРАТОР» - это устройство, которое создает (генерирует) много-много колебаний.
Разберемся сначала в том, как он создает колебания, или как в нем возникают колебания, а уж потом выясним, почему их много.

2. КАК СОЗДАТЬ МУЛЬТИВИБРАТОР?
Шаг №1. Возьмем простейший усилитель НЧ (см. мою статью «Транзистор», п.4 на странице «Радиокомпоненты»):

(Здесь я не описываю его принцип действия).
Шаг №2. Объединим два идентичных усилителя так, чтобы получился двухкаскадный УНЧ:


Шаг №3. Соединим выход этого усилителя с его входом:


Возникнет так называемая положительная обратная связь (ПОС). Вы наверняка слышали свист, который издавали звуковые колонки, если человек с микрофоном становился слишком близко к ним. То же самое происходит с музыкальным центром в режиме «караоке», если поднести микрофон к колонкам. В любом таком случае сигнал с выхода усилителя поступает на его же вход, усилитель входит в режим самовозбуждения и превращается в автогенератор, возникает звук. Иногда усилитель может самовозбуждаться даже на ультразвуковых частотах. Короче – при изготовлении усилителей ПОС вредна и с ней всячески приходится бороться, но это уже несколько другая история.
Вернемся к нашему усилителю, охваченному ПОС, т.е. МУЛЬТИВИБРАТОРУ! Да, это уже он! Правда, изображать именно мультивибратор принято так, как на рис. справа. Кстати, в сети имеется достаточное количество «извращенцев», которые рисуют эту схему и перевернутой, и на боку лежащей. Зачем это? Наверное, как в анекдоте, «чтобы отличаться». Или вы делиться, или (есть такое русское слово!) вы пендриться.

Мультивибратор можно собрать на транзисторах n-p-n или p-n-p:

Оценить работу мультивибратора можно на слух или зрительно. В первом случае нагрузкой должен быть звуковой излучатель, во втором – лампочка или светодиод:


В случае применения низкоомных динамиков, потребуется выходной трансформатор или дополнительный усилительный каскад:


Нагрузка может быть включена в оба плеча мультивибратора:


В случае применения светодиодов желательно включить дополнительные резисторы, роль которых и выполняют, в данном случае, R1 и R4.

3. КАК РАБОТАЕТ МУЛЬТИВИБРАТОР?


В момент включения питания транзисторы обоих плеч мультивибратора открываются, так как на их базы через соответствующие им резисторы R2 и R3 подаются положительные (отрицательные – здесь и далее в скобках для p-n-p транзисторов) напряжения смещения. Одновременно начинают заряжаться конденсаторы связи: С1 - через эмиттерный переход транзистора VТ2 и резистор R1; С2 - через эмиттерный переход транзистора V1 и резистор R4. Эти цепи зарядки конденсаторов, являясь делителями напряжения источника питания, создают на базах транзисторов (относительно эмиттеров) все возрастающие по значению положительные (отрицательные) напряжения, стремящиеся все больше открыть транзисторы. Открывание транзистора вызывает снижение положительного (отрицательного) напряжения на его коллекторе, что вызывает снижение положительного (отрицательного) напряжения на базе другого транзистора, закрывая его. Такой процесс протекает сразу в обоих транзисторах, однако закрывается только один из них, на базе которого более высокое отрицательное (положительное) напряжение, например, из-за разницы коэффициентов передачи токов h21э (см. мою статью «Транзистор», п.4 на странице «Радиокомпоненты»), номиналов резисторов и конденсаторов, поскольку, даже при подборе идентичных пар, параметры элементов все равно будут несколько отличаться. Второй транзистор остается открытым. Но эти состояния транзисторов неустойчивы, ибо электрические процессы в их цепях продолжаются. Допустим, что через некоторое время после включения питания закрытым оказался транзистор V2, а открытым - транзистор V1. С этого момента конденсатор С1 начинает разряжаться через открытый транзистор V1, сопротивление участка эмиттер-коллектор которого в это время мало, и резистор R2. По мере разрядки конденсатора С1 отрицательное (положительное) напряжение на базе закрытого транзистора V2 уменьшается. Как только конденсатор полностью разрядится и напряжение на базе транзистора V2 станет близким нулю, в коллекторной цепи этого, теперь уже открывающегося транзистора появляется ток, который воздействует через конденсатор С2 на базу транзистора V1 и понижает положительное (отрицательное) напряжение на ней. В результате ток, текущий через транзистор V1, начинает уменьшаться, а через транзистор V2, наоборот, увеличиваться. Это приводит к тому, что транзистор V1 закрывается, а транзистор V2 открывается. Теперь начнет разряжаться конденсатор С2, но через открытый транзистор V2 и резистор R3, что в конечном итоге приводит к открыванию первого и закрыванию второго транзисторов и т.д. Транзисторы все время взаимодействуют, в результате чего мультивибратор генерирует электрические колебания.
Работу мультивибратора иллюстрируют графики зависимостей напряжений Uбэ и Uк одного и второго транзисторов:

Как видно, мультивибратор генерирует, практически, «прямоугольные» колебания. Некоторое нарушение прямоугольной формы связано с переходными процессами в моменты отпирания транзисторов. Отсюда же видно, что сигнал можно «снимать» с любого транзистора. Просто наиболее принято изображать именно так, как это показано выше.
На практике можно считать форму колебаний мультивибратора «чисто прямоугольной»:

С одной стороны, кажется, что форма сигнала мультивибратора довольно простая. Но это не совсем так. Точнее, совсем не так . Наиболее простая форма сигнала – это синусоида:

Если генератор создает идеальный синусоидальный сигнал, то ему соответствует строго одна определенная частота колебаний. Чем больше форма сигнала отличается от синусоиды, тем больше в спектре сигнала присутствует частот, кратных основной. А форма сигнала мультивибратора довольно далека от синусоиды. Следовательно, если, например, частота его колебаний составляет 1000 Гц, то в спектре будут присутствовать частоты и 2000 Гц, и 3000 Гц, и 4000 Гц… и т.д. правда амплитуды этих гармоник будут значительно меньше основного сигнала. Но они будут! Вот почему данный генератор называется МУЛЬТИ вибратор.
Частота колебаний мультивибратора зависит как от емкости конденсаторов связи, так и от сопротивления базовых резисторов. Если в мультивибраторе соблюдаются условия: R1=R4, R2=R3, R1симметричным . Как видно, конденсаторы связи могут быть электролитическими и при n - p - n транзисторах плюсы конденсаторов подключаются к коллекторам. Если применить p - n - p транзисторы, надо поменять полярность источника питания и полярность электролитических конденсаторов.
Примерную частоту колебаний симметричного мультивибратора можно подсчитать по упрощенной формуле:
, где f - частота в Гц, R - сопротивление базового резистора в кОм, С - ёмкость конденсатора связи в мкФ.

4. ИЗМЕНЕНИЕ ЧАСТОТЫ и не только
Как было отмечено выше, частота импульсов, генерируемых мультивибратором, определяется величинами разделительных конденсаторов и базовых резисторов. Из приведенной формулы видно, что увеличение емкости конденсаторов и/или увеличение сопротивления базовых резисторов ведет к уменьшению частоты мультивибратора и, соответственно, наоборот. Конечно, впаивать конденсаторы разной емкости или резисторы разного сопротивления можно, но лишь на стадии экспериментов. Оперативно частоту меняют переменным резистором R5 в базовых цепях:

Форма графика колебаний мультивибратора называется «меандр»:


Время от начала одного импульса до начала другого – период Т – состоит из:
tи – длительности импульса и tп – длительности паузы.
Отношение S=Т/tи - называется скважностью . Для симметричного мультивибратора S=2.
Величина, обратная скважности называется коэффициентом заполнения D=1/S. Для симметричного мультивибратора D=0,5.
Мультивибратор, схема которого показана ниже, вырабатывает прямоугольные импульсы. Частоту их повторения можно изменять в широких пределах, при этом скважность импульсов остаётся неизменной .


Работа мультивибратора отличается тем, что в моменты времени, когда транзистор VТ1 закрыт, конденсатор С2 разряжается через цепочку, состоящую из диода VD3 и резистора R4, а также через резистор R3. Аналогично, когда закрыт транзистор VТ2, конденсатор С1 разряжается через диод VD2 и резисторы R4 и R5.
Частоту повторения импульсов можно регулировать в больших пределах, изменяя только сопротивление резистора R4.
Мультивибратор с данными деталей, показанными на схеме, генерирует импульсы с частотой повторения от 140 до 1400 Гц.
В мультивибраторе можно применить диоды Д2В-Д2И, Д9В-Д9Л, и любые маломощные транзисторы со структурой n-р-n или р-n-р. При использовании транзисторов со структурой р-n-р полярность включения всех диодов и источника питания необходимо поменять на обратную.
Если немного изменить включение резистора R7, то пучится мультивибратор с изменяемой скважностью импульсов:


В зависимости от положения движка резистора R7данный мультивибратор становится несимметричным, и график его колебаний может быть, например, таким:


В одном и другом случаях меняется соотношение Т/tи – меняется скважность.
Понятно, надеюсь, также и то, что грубо менять скважность можно, установив конденсаторы разной емкости.

5. НЕСИММЕТРИЧНЫЙ МУЛЬТИВИБРАТОР на транзисторах разной проводимости :

Несимметричный мультивибратор состоит из усилительного каскада на двух транзисторах, выход которого (коллектор транзистора VT2) соединен с входом (база транзистора VT1) через конденсатор C1. Нагрузкой является резистор R2, с которого снимается сигнал (вместо него может быть включен светодиод, лампочка накаливания или динамик). Транзистор VT1 прямой проводимости (p-n-p типа), открывается при подаче на базу отрицательного относительно эмиттера потенциала. Транзистор VT2 обратной проводимости (n-p-n типа), открывается при подаче на базу положительного относительно эмиттера потенциала.

При включении конденсатор C1 заряжается через резисторы R2 и R1, потенциал базы уменьшается. Когда на базе VT1 возникает отрицательный потенциал, транзистор VT1 открывается, сопротивление коллектор-эмиттер падает. База транзистора VT2 оказывается соединенной с положительным полюсом источника, транзистор VT2 также открывается, ток коллектора растет. В результате через R2 течет ток, конденсатор C1 разряжается через резистор R1 и транзистор VT2. Потенциал базы VT1 возрастает, транзистор VT1 закрывается, вызывая закрывание транзистора VT2. После этого конденсатор C1 снова заряжается, затем разряжается и т.д. Частота генерируемых импульсов обратно пропорциональна времени заряда конденсатора T ~ R1×C. С ростом напряжения питания конденсатор заряжается быстрее, частота генерируемых импульсов растет. При увеличении сопротивления резистора R1 или ёмкости конденсатора С1 частота колебаний уменьшается.
Реально частоту изменяют, например, так:

Примеры с сайта http://lessonradio.narod.ru/Diagram.htm

6. ЖДУЩИЙ МУЛЬТИВИБРАТОР
Такой мультивибратор генерирует импульсы тока (или напряжения) при подаче на его вход запускающих сигналов от другого источника, например от автоколебательного мультивибратора. Чтобы автоколебательный мультивибратор превратить в мультивибратор ждущий (см. схему из п. 3), надо сделать следующее: конденсатор С2 удалить, а вместо него между коллектором транзистора VT2 и базой транзистора VT1 включить резистор R3; между базой транзистора VT1 и заземленным проводником включить последовательно соединенные элемент на 1,5 В и резистор сопротивлением R5, но так, чтобы с базой соединялся (через R5) положительный полюс элемента; к базовой цепи транзистора VТ1 подключить конденсатор С2, второй вывод которого будет выполнять роль контакта входного управляющего сигнала . Исходное состояние транзистора VТ1 такого мультивибратора - закрытое, транзистора VТ2 - открытое. Напряжение на коллекторе закрытого транзистора должно быть близким к напряжению источника питания, а на коллекторе открытого транзистора - не превышать 0,2 - 0,3 В. Миллиамперметр (на ток 10-15 мА) включить в коллекторную цепь транзистора V1 и, наблюдая за его стрелкой, включить между контактом УПР сигнал и заземленным проводником, буквально на мгновение, один-два элемента ААА, соединенные последовательно (на схеме GB1). ВНИМАНИЕ: отрицательный полюс этого внешнего электрического сигнала должен подключаться к контакту УПР сигнал . При этом стрелка миллиамперметра должна тут же отклониться до значения наибольшего тока коллекторной цепи транзистора, застыть на некоторое время, а затем вернуться в исходное положение, чтобы ожидать следующего сигнала. Если повторить этот опыт несколько раз, то миллиамперметр при каждом сигнале будет показывать мгновенно возрастающий до 8 - 10 мА и спустя некоторое время, так же мгновенно убывающий почти до нуля коллекторный ток транзистора VТ1. Это одиночные импульсы тока, генерируемые мультивибратором. Даже если батарею GB1 подольше держать подключенной к зажиму УПР сигнал , произойдет то же самое - на выходе мультивибратора появится только один импульс.


Если коснуться вывода базы транзистора VТ1 каким-либо металлическим предметом, взятым в руку, то, возможно, и в этом случае ждущий мультивибратор сработает - от электростатического заряда тела. Можно включить миллиамперметр в коллекторную цепь транзистора VТ2. При подаче управляющего сигнала коллекторный ток этого транзистора должен резко уменьшиться почти до нуля, а затем так же резко увеличиться до значения тока открытого транзистора. Это тоже импульс тока, но отрицательной полярности.
Каков принцип действия ждущего мультивибратора? В таком мультивибраторе связь между коллектором транзистора VТ2 и базой транзистора VТ1 не емкостная, как в автоколебательном, а резистивная - через резистор R3. На базу транзистора VТ2 через резистор R2 подается открывающее его отрицательное напряжение смещения. Транзистор же VТ1 надежно закрыт положительным напряжением элемента G1 на его базе. Такое состояние транзисторов весьма устойчиво. В таком состоянии VT1 может находиться сколько угодно времени. При появлении на базе транзистора VТ1 импульса напряжения отрицательной полярности транзисторы переходят в режим неустойчивого состояния. Под действием входного сигнала транзистор VТ1 открывается, а изменяющееся при этом напряжение на его коллекторе через конденсатор С1 закрывает транзистор VТ2. В таком состоянии транзисторы находятся до тех пор, пока не разрядится конденсатор С1 (через резистор R2 и открытый транзистор VТ1, сопротивление которого в это время мало). Как только конденсатор разрядится, транзистор VТ2 тут же откроется, а транзистор VТ1 закроется. С этого момента мультивибратор вновь оказывается в исходном, устойчивом ждущем режиме. Таким образом, ждущий мультивибратор имеет одно устойчивое и одно неустойчивое состояние . Во время неустойчивого состояния он генерирует один прямоугольный импульс тока (напряжения), длительность которого зависит от емкости конденсатора С1. Чем больше емкость этого конденсатора, тем больше длительность импульса. Так, например, при емкости конденсатора 50 мкФ мультивибратор генерирует импульс тока длительностью около 1,5 с, а с конденсатором емкостью 150 мкФ - раза в три больше. Через дополнительные конденсаторы - положительные импульсы напряжения можно снимать с выхода 1, а отрицательные с выхода 2. Только ли импульсом отрицательного напряжения, поданным на базу транзистора VТ1, можно вывести мультивибратор из ждущего режима? Нет, не только. Это можно сделать и подачей импульса напряжения положительной полярности, но на базу транзистора VТ2.
Как практически можно использовать ждущий мультивибратор? По-разному. Например, для преобразования синусоидального напряжения в импульсы напряжения (или тока) прямоугольной формы такой же частоты, или включения на какое-то время другого прибора путем подачи на вход ждущего мультивибратора кратковременного электрического сигнала.

Пример применения ждущего мультивибратора – индикатор максимального числа оборотов.
При обкатке нового автомобиля, число оборотов двигателя не должно превышать в течение определенного времени максимально допустимого значения, рекомендованного заводом-изготовителем.
Для контроля числа оборотов двигателя, можно воспользоваться устройством, собранным по приводимой здесь схеме. В качестве индикатора максимального числа оборотов двигателя использована лампа накаливания.


Основными частями тахометра являются ждущий мультивибратор на транзисторах Т1 и Т2 и триггер Шмитта на транзисторах T5 и Т6. Входной сигнал, поступающий с прерывателя, подается на дифференцирующую цепочку R4C1 (это необходимо для получения импульсов одинаковой длительности). Дальнейшее формирование сигнала выполняет мультивибратор. Диод Д1 не пропускает отрицательные полуволны входного сигнала на базу транзистора Т2. Импульсы, генерируемые мультивибратором, через эмиттерный повторитель, выполненный на транзисторе Т3, и интегрирующую цепочку R7C3 поступают на триггер Шмитта. Индикаторная лампа Л1, включенная в эмиттерную цепь транзистора T6, загорается только тогда, когда число оборотов двигателя станет больше заранее установленного (с помощью переменного резистора R8).
Калибровку готового прибора можно произвести по образцовому тахометру или по звуковому генератору. Так, например, для четырехтактного четырехцилиндрового двигателя 1500 об/мин соответствует частота звукового генератора 60 Гц, 3000 об/мин - 100 Гц, 6000 об/мин - 200 Гц и так далее.
При использовании деталей с данными, которые указаны на схеме, тахометр позволяет регистрировать от 500 до 10000 об/мин. Потребляемый ток - 20 мА.
Транзисторы ВС107 можно заменить на КТ315 с любым буквенным индексом. В качестве диода Д1 можно использовать любой кремниевый диод. Применение германиевых транзисторов и диодов не рекомендуется из-за тяжелого температурного режима.

7. МУЛЬТИВИБРАТОРЫ МНОГОФАЗНЫЕ
получаются путём добавления усилительных каскадов и ПОС.
Трёхфазный мультивибратор:


Пример с сайта http://www.votshema.ru/324-simmetrichnyy-multivibrator.html

Четрёхфазный мультивибратор требует особых мер для обеспечения стабильности работы:


Пример с сайта http://www.moyashkola.net/krugok/r_begog.htm

8. МУЛЬТИВИБРАТОРЫ НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ
Мультивибратор может быть выполнен на логических элементах, например, И-НЕ. Схема возможного варианта, например, такая:


Функцию активных элементов здесь выполняют логические элементы 2И-НЕ (см. мою статью «МИКРОСХЕМА» на стр. «РАДИОкомпоненты»), включенные инверторами. Благодаря ПОС между выходом DD1.2 и входом DD1.1, а также выходом DD1.1 и входом DD1.2, создаваемым конденсаторами С1 и С2, устройство возбуждается и генерирует электрические импульсы. Частота следования импульсов зависит от номиналов конденсаторов и резисторов R1 и R2. Уменьшив емкости конденсаторов до 1…5 мкФ получим звуковую частоту 500…1000 Гц. Головной телефон надо подключить к одному из выходов мультивибратора через конденсатор емкостью 0,01…0,015 мкФ.
Иногда этот же мультивибратор изображают так:

Мультивибратор может быть выполнен на трёх логических элементах:


Все элементы включены инверторами и соединены последовательно. Времязадающая цепочка образована С1 и R1. В качестве индикатора можно использовать лампочку накаливания. Для плавного изменения частоты вместо R1 следует включить переменный резистор на 1,5 кОм.

Если ёмкость конденсатора будет 1 мкФ, то частота колебаний станет звуковой.
Как работает такой мультивибратор? После включения какой-то из логических элементов первым примет одно из возможных состояний и тем самым повлияет на состояние других элементов. Пусть это будет элемент DD1.2, который оказался в единичном состоянии. Через элементы DD1.1 и DD1.2 мгновенно заряжается конденсатор, и элемент DD1.1 оказывается в нулевом состоянии. В таком же состоянии оказывается элемент DD1.3, поскольку на его входе логическая 1. Такое состояние неустойчиво, потому что на выходе DD1.3 логический 0, и конденсатор начинает разряжаться через резистор и выходной каскад элемента DD1.3. По мере разрядки положительное напряжение на входе элемента DD1.1 уменьшается. Как только оно станет равным пороговому, этот элемент переключится в единичное состояние, а элемент DD1.2 – в нулевое. Конденсатор начнет заряжаться через элемент DD1.3 (на его выходе теперь уровень логической 1), резистор и элемент DD1.2. Вскоре напряжение на входе первого элемента превысит пороговое, и все элементы переключатся в противоположные состояния. Так формируются электрические импульсы на выходе мультивибратора – на инверсном выходе элемента DD1.3.
«Трёхэлементный» мультивибратор можно упростить, удалив из него DD1.3:

Работает он аналогично предыдущему. Именно такой мультивибратор чаще всего применяется в различных радиоэлектронных устройствах.

На логических элементах можно сделать и ждущий мультивибратор. Как и предыдущий, он построен на 2-х логических элементах.


Первый DD1.1 используется по своему прямому назначению – как элемент 2И-НЕ. Кнопка SB1 выполняет функцию датчика запускающих сигналов. Для индикации импульсов используется, например, светодиод. Длительность импульсов можно увеличивать, увеличивая ёмкость С1 и сопротивление R1. Вместо R1 можно включить переменный (подстроечный) резистор сопротивлением около 2 кОм (но не более 2,2 кОм) для изменения длительности импульсов в некоторых пределах. Но при сопротивлении менее 100 Ом мультивибратор перестанет работать.
Принцип действия. В начальный момент нижний вывод элемента DD1.1 ни с чем не соединён – на нём уровень логической 1. А для элемента 2И-НЕ этого достаточно, чтобы он оказался в нулевом состоянии. На входе DD1.2 также уровень логического 0, поскольку падение напряжения на резисторе, создаваемое входным током элемента, удерживает входной транзистор элемента в закрытом состоянии. Напряжение логической 1 на выходе этого элемента поддерживает первый элемент в нулевом состоянии. При нажатии кнопки на вход первого элемента подаётся запускающий импульс отрицательной полярности, который переключает элемент DD1.1 в единичное состояние. Возникающий в этот момент скачок положительного напряжения на его выходе передаётся через конденсатор на входы второго элемента и переключает его из единичного состояния в нулевое. Такое состояние элементов остаётся и после окончания действия запускающего импульса. С момента появления положительного импульса на выходе первого элемента начинает заряжаться конденсатор – через выходной каскад этого элемента и резистор. По мере зарядки напряжение на резисторе падает. Как только оно достигнет порогового, второй элемент переключится в единичное состояние, а первый – в нулевое. Конденсатор быстро разрядится через выходной каскад первого элемента и водной каскад второго, и устройство окажется в ждущем режиме.
Следует иметь ввиду, что для нормальной работы мультивибратора длительность запускающего импульса должна быть меньше длительности формируемого.

P.S. Тема "МУЛЬТИВИБРАТОР" является примером творческого подхода к изучению электрических колебаний в курсе школьной физики. И не только. Создание простых схем, моделирование их работы, наблюдение и измерение электрических величин - это выход далеко за рамки обычной школьной физики и информатики. А создание реальных устройств совершенно меняет представление молодых людей о том, что и как можно ИЗУЧАТЬ в школе (терпеть не могу слово "УЧИТЬ").

Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.

От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.

Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.

Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.

Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными .

На рисунке представлена схема симметричного мультивибратора.

В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (t и ) = t паузы (t п ). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.

Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:

Где f - частота в герцах (Гц), С - ёмкость в микрофарадах (мкФ) и R - сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.

Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.

Основными характеристиками импульсного сигнала принято считать следующие параметры:

    Частота . Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.

    Длительность импульса . Измеряется в долях секунды: мили, микро, нано, пико и так далее.

    Амплитуда . В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.

    Скважность . Отношение периода (Т) к длительности импульса (t ). Если длина импульса равна 0,5 периода, то скважность равна двум.

Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.

Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.

Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.

Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.

Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах .

При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.

Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.

Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.

Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.

Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром .

Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов , которым можно измерить ёмкость конденсатора.

Принципиальная схема мощного транзисторного мультивибратора с управлением, построен на транзисторах КТ972, КТ973. Многие радиолюбители начинали свой творческий путь со сборки простых радиоприёмников прямого усиления, несложныхусилителей мощности звуковой частоты и сборки простых мультивибраторов, состоящих из пары транзисторов, двух или четырёх резисторов и двух конденсаторов.

Традиционный симметричный мультивибратор обладает рядом недостатков, среди которых относительно высокое выходное сопротивление, затянутые фронты импульсов, ограниченное напряжение питания, невысокий КПД при работе на низкоомную нагрузку.

Принципиальная схема

На рис. 1. представлена схема управляемого симметричного двухфазного мультивибратора, работающего на звуковых частотах, нагрузка к которому подключается по мостовой схеме Благодаря этому, размах амплитуды сигнала на нагрузке почти вдвое превышает напряжение питания мультивибратора, что позволяет получитъ значительно большую громкость, по сравнению с тем, если бы нагрузка была бы включена в одно из плеч мультивибратора.

Кроме того, на нагрузку подаётся «настоящее» напряжение переменного тока, что значительно улучшает условия работы подключенной в качестве нагрузки динамической головки - отсутствует эффект вдавливания или выпячивания диффузора (в зависимости от полярности включения динамика). Также отсутствуют щелчки при включении или выключении мультивибратора.

Рис. 1. Принципиальна ясхема мощного мультивибратора на транзисторах КТ972, КТ973.

Симметричный двухфазный мультивибратор состоит из двух двухтактных плеч, напряжение на которых попеременно меняется с низкого уровня на высокий. Допустим, что при включении питания, первым открылся составной транзистор VТ2.

Тогда напряжение на выводах коллекторов транзисторов VТ1, VТ2 станет близко к нулю (VТ1 открыт, VТ2 закрыт) К точке соединения их коллекторов через токоограничительный резистор R12 подключен составной р-п-р транзистор VТ5, который откроется. К нагрузке будет приложено напряжение около 8 В при напряжении питания мультивибратора 9 В. С перезарядом конденсаторов С2, С4, мультивибратор переключится - VТ1, VТ6 откроются, VТ2, VТ5 закроются.

К нагрузке будет приложено такое же напряжение, но в обратной полярности. Частота переключения мультивибратора зависит от ёмкости конденсаторов С2, С4, и, в меньшей степени, от установленного сопротивления подстроечного резистора R7. При напряжении питания 9 В частоту можно перестраивать от 1,4 до 1,5 кГц.

При уменьшении сопротивления R7 ниже условного значения, генерация звуковых частот срывается. Следует отметить, что после запуска мультивибратор может работать без резисторов R5, R11. Форма напряжения на выходе мультивибратора близка к прямоугольной.

Резисторы R6, R8 и диоды VD1, VD2 защищают эмиттерные переходы транзисторов VТ2, VТ6 от пробоя, что особенно актуально при напряжении питания мультивибратора более 10В. Резисторы R1, R13 необходимы для устойчивой генерации, при их отсутствии мультивибратор может «хрипеть». Диод VD3 защищает мощные транзисторы от переполю-совки напряжения питания При его отсутствии и при достаточной мощности источника питания при переполюсовке напряжения встроенные защитные дирды транзисторов могут оказаться повреждёнными.

Чтобы расширить функциональные возможности этого мультивибратора, в него введена возможность включения/выключения при подаче напряжения положительной полярности на вход управления. Если управляющий вход никуда не подключен или напряжение на нём не более 0,5 В, транзисторы VТЗ, VТ4 закрыты, мультивибратор работает.

При подаче на вход управления напряжения высокого уровня, например, с выхода ТТЛШ. КМОП микросхем, датчика электрических или неэлектрических величин, например, датчика влажности, транзисторы VТЗ, VТ4 открываются, мультивибратор затормаживается. В таком состоянии мультивибратор потребляет ток менее 200 мкА, без учета тока через R2, R3, R9.

Детали и монтаж

Мультивибратор можно смонтировать на печатной плате размерами 70*50 мм, эскиз которой показан на рис. 2 Постоянные резисторы можно использовать любые малогабаритные. Подстроечный резистор РП1-63М, СП4-1 или аналогичный импортный. Оксидные конденсаторы К50-29, К50-35 или аналоги Конденсаторы С2, С4 - К73-9, К73-17, К73-24 или любые плёночные малогабаритные.

Рис. 2. Печатная плата для схемы мощного мультивибратора на транзисторах.

Диоды КД522А можно заменить на КД503. КД521. Д223 с любым буквенным индексом или импортными 1N914, 1N4148. Вместо диодов КД226А и КД243А подойдёт любой из серий КД226, КД257, КД258, 1 N5401 ...1 N5407.

Составные транзисторы КТ972А можно заменить любым из этой серии или из серии КТ8131, а вместо КТ973 любой из серии КТ973, КТ8130. При необходимости, мощные транзисторы устанавливают на небольшие теплоотводы. При отсутствии таких транзисторов, их можно заменить аналогами из двух транзисторов, включен ных по схеме Дарлингтона, рис. 3. Вместо маломощных п-р-п транзисторов КТ315Г подойдут любые из серий КТ312, КТ315, КТ342, КТ3102, КТ645, SS9014 и аналогичные.

Рис. 3. Принципиальная схема эквивалентной замены транзисторов КТ972, КТ973.

Нагрузкой этого мультивибратора может бытъ динамическая головка, телефонный капсюль, пьезокерамический излучатель звука, импульсный повышающий/понижающий трансформатор.

При использовании динамической головки с сопротивлением обмотки 8 Ом, следует учитывать, что при напряжении питания 9 В на нагрузку будет поступать 8 Вт мощности напряжения переменного тока. Поэтому, двух...четырёхваттная динамическая головка может бытъ повреждена уже через 1...2 минуты работы.

Налаживание

На рабочую частоту мультивибратора значительное влияние оказывает ёмкость нагрузки и напряжение питания. Например, при изменении напряжения питания от 5 до 15 В частота изменяется с 2850 до 1200 Гц при работе на мультивибратора на нагрузку в виде телефонного капсюля с сопротивлением обмотки 56 Ом. В области малых напряжений питания изменение рабочей частоты более значительно

Подбором сопротивлений резисторов R5, R11, R6, R8 можно задать форму импульсов почти строго прямоугольной при работе мультивибратора с конкретной подключенной нагрузкой при заданном напряжении питания.

Этот мультивибратор может найти применение в различных сигнальных устройствах, устройствах звукового оповещения, когда при небольшом имеющемся напряжении источника питания требуется получить значительную мощность на излучателе звука. Кроме того, его удобно использовать в преобразователях низкого напряжения в высокое, в том числе, работающих на низкой частоте осветительной сети 50 Гц.

Бутов А. Л. РК-2010-04.

В этой статье я буду подробно расказывать как сделать мультивибратор, который является первой схемой чуть ли не каждого второго радиолюбителя. Как мы знаем, мультивибратором называют электронные устройства, генерирующие электрические колебания, близкие по форме к прямоугольной, что и отражено в его названии: "мульти - много", "вибро - колебание". Другими словами, мультивибратор - генератор прямоугольных импульсов релаксационного типа с резистивно - емкостными положительными обратными связями, использующий замкнутый в кольцо положительной обратной связи двухкакасдный усилитель. При работе мультивибратора в режиме автоколебаний вырабатываются периодически повторяющиеся импульсы прямоугольной формы. Частота генерируемых импульсов определяется параметрами времязадающей цепи, свойствами схемы и режимом ее питания. На частоту автоколебаний оказывает также влияние подключаемая нагрузка. Обычно мультивибратор применяется в качестве генератора импульсов относительно большой длительности, которые затем используются для формирования импульсов необходимой длительности и амплитуды.

Работа схемы мультивибратора

Симметричный мультивибратор на транзисторах

Схематически мультивибратор состоит из двух усилительных каскадов с общим эмиттером, выходное напряжение каждого из которых подается на вход другого. При подсоединении схемы к источнику питания Ек оба транзистора пропускают коллекторные точки - их рабочие точки находятся в активной области, поскольку на базы через резисторы RБ1 и RБ2 подается отрицательное смещение. Однако такое состояние схемы неустойчивое. Из-за наличия в схеме положительной обратной связи выполняется условие?Ку>1 и двухкаскадный усилитель самовозбуждается. Начинается процесс регенерации - быстрое увеличение тока одного транзистора и уменьшение тока другого транзистора. Пусть в результате любого случайного изменения напряжений на базах или коллекторах несколько увеличится ток IK1 транзистора VT1. При этом увеличится падение напряжения на резисторе RK1 и коллектор транзистора VT1 получит приращение положительного потенциала. Поскольку напряжение на конденсаторе СБ1 не может мгновенно измениться, это приращение прикладывается к базе транзистора VT2, подзапирая его. Коллекторный ток IK2 при этом уменьшается, напряжение на коллекторе транзистора VT2 становится более отрицательным и, передаваясь через конденсатор СБ2 на базу транзистора VT1, еще больше открывает его, увеличивая ток IK1. Этот процесс протекает лавинообразно и заканчивается тем, что транзистор VT1 входит в режим насыщения, а транзистор VT2 - в режим отсечки. Схема переходит в одно из своих временно устойчивых состояний равновесия. При этом открытое состояние транзистора VT1 обеспечивается смещением от источника питания Ек через резистор RБ1, а запертое состояние транзистора VT2 - положительным напряжением на конденсаторе СБ1 (Ucm = UБ2 > 0), который через открытый транзистор VT1 включен в промежуток база - эмиттер транзистора VT2.

Для сооружения мультивибратора нам из радиокомпонентов понадобятся:

1. Два транзистора типа КТ315.
2. Два электролитических конденсатора на 16в, 10-200микрофарад (Чем меньше емкость, тем чаще моргание).
3. 4 резистора номиналом: 100-500 ом 2 штуки (если вы ставите 100 ом, то схема будет работать даже от 2.5в), 10 ком 2 штуки. Все резисторы мощностью в 0.125 ватт.
4. Два не ярких светодиода (Любого цвета, кроме белого).


Печатная плата формата Lay6 . Приступим к изготовлению. Сама печатная плата имеет такой вид:

Припаивываем два транзистора, не перепутайте коллектор и базу на транзисторе - это частая ошибка.


Паяем конденсаторы 10-200 Микрофарад. Обратите внимание, что конденсаторы на 10 вольт крайне нежелательны для использование в этой схеме, если вы будете подавать питание 12 вольт. Помните, что у электролитических конденсаторов существует полярность!



Мультивибратор почти готов. Остается припаять светодиоды, и входные провода. Фото готового устройства выглядит примерно так:


И чтобы вам всё стало наглядно понятно, видеоролик работы простого мультивибратора:

На практике, мультивибраторы применяют в качестве генераторов импульсов, делителей частоты, формирователей импульсов, бесконтактных переключателей и так далее, в электронных игрушках, устройствах автоматики, вычислительной и измерительной техники, в реле времени и задающих устройствах. С вами был Boil-:D . (материал был приготовлен по запросу Демьян" a)

Обсудить статью МУЛЬТИВИБРАТОР