Назначение закрылков в неравном бою. Механизация крыла

Билет №1

Механизация крыла представляет собой систему устройств (закрылков, щитков, предкрылков предназначенных для управления подъемной силой и сопротивлением самолета главным образом для улучшения его ВПХ. Эти же устройства могут применяться для повышения маневренных возможностей легких скоростных самолетов, а часть из них, например предкрылки, - для улучшения поперечной устойчивости и управляемости самолета при полете на больших углах атаки, особенно на самолетах со стреловидным крылом.

Здесь в носовой части крыла - предкрылки 1 или отклоняемые носки 8; в хвостовой части крыла - закрылки (поворотно- выдвижные 9, одно-, двух- или трехщелевые 5), элерон-закрылок 10, гасители подъемной силы (тормозные щитки) 2. Все эти средства позволяют управлять подъемной силой и сопротивлением крыла, улучшая ВПХ самолета. 6- внешний элерон, 3- внутренний элерон, 4- интерцептор, 7 – триммеры. Требования к механизации крыла: максимальное увеличение при отклонении средств механизации в посадочное положение при посадочных углах атаки самолета, минимальное увеличение в убранном положении средств механизации, максимальное значение аэродинамического качества при разбеге самолета с небольшой тяго вооруженностью, синхронность действий механизации на обеих консолях крыла, простота конструкции и высокая надежность работы.

Факторы, увеличивающие несущую способность : увеличением эффективности кривизны профиля крыла при отклонении средств механизации в рабочее положение, увеличением площади крыла при применении выдвижных щитков или выдвижных закрылков, управлением пограничным слоем для обеспечения безотрывного обтекания верхней поверхности крыла или затягивания срыва на большие углы атаки за счет увеличения скорости пограничного слоя. Щитком наз-ся подвижная часть нижней поверхности крыла у его задней кромки, отклоняемая вниз для увеличения подъемной силы крыла и его сопротивления. Различают щитки с фиксированной осью вращения и выдвижные. Прирост подъемной силы получается за счет увеличения эффективной кривизны профиля при выпуске щитков и откоса пограничного слоя с верхней поверхности крыла в зону разрежения за щитком. Критические углы атаки крыла с выпущенными и убранными щитками близки между собой. Для выдвижных щитков прирост подъемной силы получается и за счет увеличения площади крыла. Конструкция щитка состоит из каркаса и обшивки. К каркасу крепится обшивка. Крепление к крылу - при помощи шомпола на специальном профиле в передней части щитка и на заднем лонжероне крыла.

Закрылки - профилированная подвижная часть крыла, расположенная в его хвостовой части и отклоняемая вниз для увеличения подъемной силы крыла. Различают поворотный закрылок - поворачиваемый вокруг связанной с крылом оси вращения, выдвижной - поворачиваемый относительно оси вращения и одновременно смещаемый назад вдоль хорды крыла для увеличения его площади, щелевой - при отклонении которого между его носком и крылом образуется профилированная щель, многощелевой закрылок, составленный из нескольких подвижных звеньев отклоняющихся на разные углы и разделяющихся профилированными щелями. Конструкция поворотного закрылка состоит из каркаса и обшивки. Каркас обычно состоит из одного лонжерона, стрингеров и нервюр. Задняя часть закрылка может иметь сотовую конструкцию, что повышает его жесткость и уменьшает массу. Навеска такого закрылка осуществляется при помощи кронштейнов. Для его выдвижения назад по хорде и отклонения вниз используют специально спрофилированные направляющие рельсы, закрепленные на усиленных нервюрах крыла и опирающиеся на эти рельсы ролики, установленные на торцевых нервюрах закрылка на кронштейнах. На лонжероне закрылка закреплен кронштейн, с которым связана тяга силового привода выпуска и уборки закрылка. Очертания носка закрылка и задней части крыла, положение неподвижной оси вращения закрылка выбираются так, чтобы при отклонении закрылка образовывалась профилированная щель, ускоряющая движение проходящего через нее воздуха и направляющая его вдоль верхней поверхности закрылка. Это позволяет получит более высокие значения коэф-та подъемноой силы на взлете и посадке. Дефлектор -профилированная часть закрылка, установленная неподвижно перед носком закрылка и образующая щель перед ним. Конструкция 3-щелевого выдвижного закрылка. Он состоит из основного и хвостового звеньев и дефлектора. Основное звено является центральной несущей частью и главным силовым элементом закрылка, на котором монтируются хвостовое звено и дефлектор. Гасители подъемной силы (тормозные щитки) и интерцепторы-подвижные части крыла в виде профилированных щитков расположенные на верхней поверхности крыла впереди закрылков и служащие для управления подъемной силы. При включении гасители подъемной силы (тормозные щитки) отклоняются вверх симметрично на обеих половинах крыла, а при включении интерцепторов вверх отклоняется интерцептор только той половины крыла, в сторону которой надо создать крен. Поэтому интерцепторы являются органом поперечной управляемости самолета. Использование гасителей подъемной силы при заходе на посадку позволяет уточнять заход, увеличивая крутизну планирования, т. к. при отклонении этих средств механизации уменьшается подъемная сила крыла и увеличивается его сопротивление. Предкрылки - профилированная подвижная часть крыла, расположенная в носовой его части. При выпуске предкрылков между ними и носовой частью крыла образуется профилированная щель, обеспечивающая более устойчивое обтекание крыла на больших углах атаки. При работе трансмиссии ее механизмы перемещают предкрылок рельсами по кареткам, закрепленным на переднем лонжероне крыла. Щитки Крюгера устанавливают в корневой части крыла на его носке. Они обеспечивают безотрывное обтекание крыла только до определенного угла атаки, после чего начинается резкий срыв потока. Поэтому наиболее ранний срыв потока в корневой части стреловидного крыла при отсутствии срыва на его концевых частях создает пикирующий момент на уменьшение углов атаки, что повышает безопасность полета.

2.Технологический процесс (ТП) и его структура. Классификация ТП, виды документации, унифицированные ТП .

В зависимости от типа производства разраб-ся технол-ое описание произв-ых процессов на различном уровне. В условиях многономенклатурного, единичного или многосерийного производства разраб-ся в осн-ом маршрутные ТП. В маршр. карте указывают какая пов-ть обраб-ся, а также указ-ют оборудование и норму времени. Такие компоненты технологии как оснащение (приспос. зажимное, шпиндельная оснастка, патроны, суппорты, инструмент режущий и мерительный) выбирает высококвалифицированный рабочий. Для деталей параметры которых точнее 11 квалитета разраб-ся маршр-опер процессы т.е. на отдельной операции такого процесса разр-ют операц карты. Это операции на которых формируется точность наиболее отв-ных пар-ров, на них как правило важную роль играет базирование, метод настройки оборудования оснащ, всё это указ-ся в операц картах, указ режим межпереходные размеры, припуски. Операц ТП с заполнением на всю деталь разрабатывают в случае крупносерийрого или массового производства.

Еденичным ТП – назыв ТП изгот или ремонта изделия одного наименования типа размера и исп-я независимо от типа произодства.

Униф-ным ТП – назыв процесс относящийся к группе изделий, деталей, сб едениц хар-ся общностью констр-х и технологич признаков.

Среди униф различают типовые и групповые ТП

К констр признакам относ: форму, размеры их точность, шероховатость поверхн, материал, прочность, твёрдость.

К тех-им признакам относят: типовые схемы базир-я, типовые методы обр-ки эл-х пов-тей.

Типовой ТП – это процесс изгот-я изделий с общими технол признаками

Групповой ТП – это процесс изготовления группы изделий с общими технол признаками

Проект-ныйТП – это поцесс выполняемый по предварительному проекту тех-ой документации. ТП соотв-ий современным достиж-ям науки и техн. , методы и ср-ва осущ-я которого предстоит освоить назыв проектным

ТП выполн по рабочей техн и констр докум-ции назыв рабочим

ТП применяемый на предпр огранич период времени назыв временным.

ТП установл гос стандартом наз стандартным

ТП в составл которого включается не только технол операции, но и операции переем-ия, контроля, отчистки наз-ся комплексным

Во вторник в Москву доставили основной «черный ящик» разбившегося в Сочи Ту-154. Издание «Лайф» расшифровку, подлинность которой официально не была подтверждена, однако из нее следовало, что у экипажа возникли проблемы с закрылками. А источник Интерфакса в свою очередь заявил, что Ту-154 мог потерпеть крушение из-за «сваливания» при недостаточной для взлета подъемной силе крыла.

«По предварительным данным, на борту рассогласованно сработали закрылки, в результате их невыхода подъемная сила была потеряна, скорость не была достаточной для набора высоты, и самолет свалился», — сказал источник в оперативном штабе по работе на месте происшествия.

«Новая газета» попросила экспертов прокомментировать версию с закрылками.

Андрей Литвинов

летчик 1-го класса, «Аэрофлот»

— Закрылки — это очень критично. Мы (летчики ред. ) в самом начале предполагали, что это закрылки — как только стало понятно, что это не топливо и не погода. Было несколько версий — техническая, ошибка пилотирования. Но это может быть и то, и другое. Техническая проблема потянула за собой ошибку пилотирования.

Закрылки нужны только для взлета и посадки — увеличивается площадь крыла, увеличивается подъемная сила, следовательно, самолету нужна меньшая дистанция разбега, чем без закрылок. Взлетаешь вместе с закрылками, набираешь высоту, закрылки убираются. Но они могут не убираться, если что-то сломалось, или убираются не синхронно — один быстрее, второй медленнее. Если они вообще не убираются, это не страшно как раз, самолет летит и летит себе. Он не уходит в пикирование. Просто командир сообщает на землю, что у него такая техническая проблема, возвращается на аэродром и садится — с выпущенными закрылками, как полагается при штатной посадке. И инженеры уже разбираются, что за проблема.

Но если они убираются несинхронно, то тогда самолет заваливается, вот что страшно. На одной плоскости крыла подъемная сила становится больше, чем на второй, и самолет начинает крениться и в результате заваливается набок. Если самолет заваливается, пикирует, начинает опускать нос, экипаж инстинктивно начинает тянуть штурвал на себя и увеличивать режим двигателя — это абсолютно нормально. Но летчик должен контролировать пространственное положение самолета.
Есть понятие — закритический угол атаки. Это угол, при котором воздух начинает срываться с крыла. Крыло становится под определенным углом, его верхняя часть не обтекается воздухом, и самолет начинает падать, потому что его ничего не держит уже в воздухе.

Я летал на ТУ-154 8 лет. С закрылками у меня не было ситуаций, были мелкие отказы, серьезного ничего не было. Хороший надежный самолет в свое время был. Но это было 25 лет назад. Это продукт своего времени. В «Аэрофлоте» все новые самолеты — мы летаем на эйрбасах, на боингах. А министерство обороны летает на ТУ- 154. Да, нужно делать свои самолеты, да, но пусть хотя бы суперджет возьмут. На современных самолетах стоит очень много систем защиты, это фактически летающий компьютер. Если случается какая-то ситуация, автоматика не дает самолету свалиться, очень помогает летчику. Эти же самолеты — все в ручном режиме, все в ручном управлении. Но это не значит, что он должен падать, он должен быть технически исправен. Он должен проходить техническое обслуживание. Вопрос к техникам — почему такая поломка серьезная случилась у этого самолета. Ошибиться может любой человек. Опыт у экипажа есть, был, но военные летчики в принципе мало летают. Военный летчик летает 150 часов в год. А гражданский — 90 часов в месяц.

Могла сработать еще внезапность, не ожидали такого развития событий, не хватило реакции справиться. Это не говорит о том, что они неопытные. Не забывайте, что время было 5 утра. Самый сон, организм расслаблен, изначально заторможенная реакция. Мы давно говорим, что надо запретить ночные перелеты или свести их к минимуму, надо стремиться летать днем, так делают очень многие европейские компании.

Еще нужно помнить, что тяжелый был самолет, заправили полные баки топлива, груз, пассажиры. Времени на принятие решения было немного. Они не успели. Эта ситуация, конечно, должна отрабатываться. Не знаю, как в армии обучение летного состава идет, но у нас в «Аэрофлоте» это отрабатывается. Есть алгоритм действий на каждую внештатную ситуацию. Все бесконечно отрабатывается на тренажере. Ходил ли этот экипаж на тренажер, когда? Если были на тренажере, отрабатывали ли конкретные упражнения по закрылкам? Ждем ответов от следствия.

Источник, близкий к расследованию

— Сейчас все техническое расследование ведет Минобороны. Это военный борт — расшифровкой самописцев занимается институт ВВС в Люберцах, и все самописцы, агрегаты, системы перетранспортированы в Люберцы. Закрылки — это не критическая, а в принципе контролируемая и управляемая ситуация. Есть алгоритм действий при рассинхронизации или неправильном положении закрылок. Летчиков обучают всему, на тренажерах в том числе, на каждый внештатный случай летный состав отрабатывает моменты, как надо себя вести, как надо управлять самолетом. У каждого самолета есть своя специфика, алгоритмы разработаны и для Ту-154. Можно предположить сочетание технических проблем и человеческого фактора, но информации до сих пор недостаточно.

Вадим Лукашевич

Независимый авиационный эксперт, кандидат технических наук

— Неуборка закрылок — это не катастрофа. Это очень неприятное событие, но ничего страшного от этого происходить не должно. А к катастрофе в Черном море, на мой взгляд, привело стечение обстоятельств и действия экипажа.

Суть смысла закрылок самолета — повышение подъемной силы крыла на маленьких скоростях. Как крыло работает — чем выше скорость, тем больше подъемная сила. Но когда самолет взлетает скорость еще маленькая, так же, как и в процессе посадки. И для того, чтобы при падении скорости не снижалась подъемная сила, выпускаются закрылки, о которых идет речь. Надо еще понимать, что при взлете закрылки выдвигаются не так сильно, как при посадке. При выруливании самолета на полосе закрылки уже выпущены, а в момент взлета последовательно убираются шасси, тормозящие машину, а через 15-20 секунд убираются и закрылки, мешающие по мере роста скорости самолету. Они помимо подъемной силы еще создают дополнительное сопротивление воздуха и дополнительно еще пикирующий момент — когда самолет «хочет» опустить нос.

Что произошло в момент катастрофы? Тяжелый, груженый самолет, залитый топливом взлетает, летчики убирают закрылки, но это почему-то не получается. По идее, можно нормально продолжать полет и в таком состоянии, не набирая скорости, можно и развернуться и уйти на посадку, чтобы устранить проблему. Сесть можно и с таким положением закрылок, просто скорость касания будет выше и она будет не очень простой. Но здесь очевидно такого решения не было. Возможно, проблему с закрылками заметили не сразу, а увидев, как самолет начинает опускать нос, возможно и были произнесены слова, расшифрованные с самописца.

1. Взлет самолета можно производить с применением закрылков и без их применения.

2. В зависимости от условий, старта взлет самолета производить:

а) без применения закрылков с использованием номинальной мощности двигателя;

б) с применением закрылков, отклоненных на 25°, и с использованием номинальной мощности двигателя;

в) с применением закрылков, отклоненных на 30 0 , и с использованием взлетной мощности двигателя.

Отклонять закрылки на взлете более чем на 30° не рекомендуется.

3. Взлет самолета производить с помощью встречного ветра не более 12 м/сек.

Взлет без применения закрылков

4. Длина разбега самолета (транспортный вариант) без применения закрылков и с использованием номинальной мощности двигателя при нормальном полетном весе 5250 кг составляет 360 м.

Примечание. Длина разбега приведена к стандартным условиям (атмосферное давление 760 мм рт. ст., температура наружного воздуха +!5°С) при отсутствии ветра.

При взлете с мягкого грунта длина разбега увеличивается на, 29%, с песчаного покрова - на 30-35%.

По достижении скорости 105-110 км/час происходит отрыв самолета от земли.

5. После отрыва выдерживание самолета производится с постепенным отходом от земли и увеличением скорости до 140 км/час, затем самолет переводится на набор высоты.

6. Дальнейший набор высоты производить на скорости 140-150 км/час, которая является наивыгоднейшей скоростью набора высоты.

Взлет с применением закрылков

7. Использование закрылков на взлете сокращает длину разбега и взлетную дистанцию на 30-35%. Закрылки могут отклоняться на 25 и 30° в зависимости от нагрузки самолета и состояния аэродрома.

При закрылках, отклоненных на 25°, взлет производится на номинальной мощности двигателя
(рк = 900 мм рт. ст., п = 2100 об/мин). Однако наименьшая длина разбега и взлетная дистанция получаются при отклоненных на 30° закрылках с одновременным использованием взлетной мощности двигателя
(рк = 1050 мм рт. ст., п = 2200 об/мин). В этом случае при взлетном весе 5500 кг длина разбега составляет 207 м, время разбега 14,3 сек, а длина взлетной дистанции 585 м.

Данные приведены к стандартным условиям.

8. Отрыв от земли самолета с закрылками, отклоненными на 25-30°, происходит на скорости 85-90 км/час.

При взлете с отклоненными закрылками на некоторых самолетах автоматические предкрылки открываются в середине разбега на скорости около 50 км/час и остаются открытыми до достижения скорости 85 км/час, после чего полностью закрываются.

9. На высоте не менее 50 м при скорости 120 км/час постепенно убрать закрылки, контролируя их положение по указателю и непосредственным наблюдением за закрылками. Одновременно увеличивать скорость набора высоты так, чтобы к моменту полной уборки закрылков она составляла 135-140 км/час.

10. После уборки закрылков перейти на набор высоты. Набор высоты производить на скорости 140-150 км/час.

Для получения максимальной скороподъемности у земли набор высоты рекомендуется производить с закрылками, отклоненными на 5°, до высоты 500 м. Дальнейший набор высоты производить с полностью убранными закрылками.

ПРЕДУПРЕЖДЕНИЕ. Если после взлета с отклоненными закрылками не удается убрать их из-за неисправности системы управления, необходимо произвести посадку на аэродроме взлета. При заходе на посадку в этом случае на разворотах не допускать крена больше 10- 15° и скорости полета более 150 км I час. Полет самолета со скоростью, превышающей 150 км/ час, при опущенных закрылках запрещается.

11. Взлет производить с использованием одновременно верхних и нижних закрылков. Раздельно пользоваться закрылками>

l2. Использовать закрылки при взлете самолета рекомендуется при скорости ветра не более 10м/сек.

13. При взлете самолета на лыжном шасси учитывать, что при температурах наружного воздуха от 0° С и выше, особенно при мокром снеге, длина разбега может оказаться на 10-20% больше, чем при стандартной температуре минус 10° С.

Механизация крыла

Выпущенные закрылки и предкрылки.

Выпущенные предкрылки.

Механиза́ция крыла́ - совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и т. д.

Закрылки

Закрылки - отклоняемые поверхности, симметрично расположенные на задней кромке крыла. Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полёте на малых скоростях. Существует большое число типов конструкции закрылков:

Принцип работы закрылков заключается в том, что при их выпуске увеличивается кривизна профиля и (в случае выдвижных закрылков , которые также называют закрылками Фаулера ) площадь поверхности крыла, следовательно, увеличивается и подъёмная сила . Возросшая подъёмная сила позволяет летательным аппаратам лететь без сваливания при меньшей скорости. Таким образом, выпуск закрылков является эффективным способом снизить взлётную и посадочную скорости. Второе следствие выпуска закрылков - это увеличение аэродинамического сопротивления . Если при посадке возросшее лобовое сопротивление способствует торможению самолета, то при взлёте дополнительное лобовое сопротивление отнимает часть тяги двигателей. Поэтому на взлёте закрылки выпускаются всегда на меньший угол, нежели при посадке. Третье следствие выпуска закрылков - продольная перебалансировка самолёта из-за возникновения дополнительного продольного момента. Это усложняет управление самолётом (на многих современных самолётах пикирующий момент при выпуске закрылков компенсируется перестановкой стабилизатора на некоторый отрицательный угол). Закрылки, образующие при выпуске профилированные щели, называют щелевыми . Закрылки могут состоять из нескольких секций, образуя несколько щелей (как правило, от одной до трёх).

К примеру, на отечественном Ту-154М применяются двухщелевые закрылки, а на Ту-154Б - трёхщелевые. Наличие щели позволяет потоку перетекать из области повышенного давления (нижняя поверхность крыла) в область пониженного давления (верхняя поверхность крыла). Щели спрофилированы так, чтобы вытекающая из них струя была направлена по касательной к верхней поверхности, а сечение щели должно плавно сужаться для увеличения скорости потока. Пройдя через щель, струя с высокой энергией взаимодействует с «вялым» пограничным слоем и препятствует образованию завихрений и отрыву потока. Это мероприятие и позволяет «отодвинуть» срыв потока на верхней поверхности крыла на бо́льшие углы атаки и бо́льшие значения подъемной силы.

Флапероны

Флапероны , или «зависающие элероны» - элероны , которые могут выполнять также функцию закрылков при их синфазном отклонении вниз. Широко применяются в сверхлёгких самолётах и радиоуправляемых авиамоделях при полётах на малых скоростях, а также на взлёте и посадке. Иногда применяются на более тяжелых самолётах (например, Су-27). Основное достоинство флаперонов - это простота реализации на базе уже имеющихся элеронов и сервоприводов .

Предкрылки

Предкрылки - отклоняемые поверхности, установленные на передней кромке крыла. При отклонении образуют щель, аналогичную таковой у щелевых закрылков. Предкрылки, не образующие щели, называются отклоняемыми носками. Как правило, предкрылки автоматически отклоняются одновременно с закрылками, но могут и управляться независимо.

В целом, эффект предкрылков заключается в увеличении допустимого угла атаки, то есть срыв потока с верхней поверхности крыла происходит при бо́льшем угле атаки.

Помимо простых, существуют так называемые адаптивные предкрылки . Адаптивные предкрылки автоматически отклоняются для обеспечения оптимальных аэродинамических характеристик крыла в течение всего полёта. Также обеспечивается управляемость по крену при больших углах атаки с помощью асинхронного управления адаптивными предкрылками.

Интерцепторы

Выпуск левого элерон-интерцептора при парировании правого крена

Интерцепторы (спойлеры) - отклоняемые или выпускаемые в поток поверхности на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъёмную силу. Поэтому интерцепторы также называют органами непосредственного управления подъёмной силой.

В зависимости от предназначения и площади поверхности консоли, расположения её на крыле и т. д. интерцепторы делят на:

Элерон-интерцепторы

Элерон-интерцепторы представляют собой дополнение к элеронам и используются в основном для управления по крену. Они отклоняются несимметрично. Например, на Ту-154 при отклонении левого элерона вверх на угол до 20°, элерон-интерцептор на этой же консоли автоматически отклоняется вверх на угол до 45°. В результате подъёмная сила на левой консоли крыла уменьшается, и самолёт кренится влево.

У некоторых самолетов элерон-интерцепторы могут являться главным (либо резервным) органом управления по крену .

Спойлеры

Выпущенные спойлеры

Спойлеры (многофункциональные интерцепторы) - гасители подъемной силы.

Симметричное задействование интерцепторов на обеих консолях крыла приводит к резкому уменьшению подъёмной силы и торможению самолёта. После выпуска самолёт балансируется на большем угле атаки, начинает тормозиться за счёт возросшего сопротивления и плавно снижаться. Возможно изменение вертикальной скорости без изменения угла тангажа . То есть при одновременном выпуске интерцепторы используются в качестве воздушных тормозов.

Интерцепторы также активно используются для гашения подъёмной силы после приземления или при прерванном взлёте и для увеличения сопротивления. Необходимо отметить, что они не столько гасят скорость непосредственно, сколько снижают подъёмную силу крыла, что приводит к увеличению нагрузки на колёса и улучшению сцепления колёс с поверхностью. Благодаря этому, после выпуска внутренних интерцепторов можно переходить к торможению с помощью колёс.

См. также

  • Роторный предкрылок - движитель на основе предкрылка
  • Вибрирующий предкрылок - движитель на основе предкрылка
  • Элероны - рули, управляющие креном самолёта.
  • Аэродинамика Боинг 737

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Механизация крыла" в других словарях:

    Комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным слоем на поверхности крыла и (или) изменении кривизны профиля. М. к.… … Энциклопедия техники

    Комплекс устройств, изменяющих подъёмную силу и лобовое сопротивление крыла летательного аппарата. М. к. уменьшает скорость посадки самолёта, а при взлёте облегчает его отрыв от поверхности земли. В зависимости от типа М. к. подъёмную… … Большая советская энциклопедия

    механизация крыла Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    Механизация крыла - устройства (предкрылки, закрылки. щитки и др.) для изменения аэродинамических характеристик крыла в целях уменьшения скорости посадки (отрыва), длины разбега (пробега), а также улучшения манёвренности ЛА в полёте и др … Словарь военных терминов

    Энциклопедия «Авиация»

    энергетическая механизация крыла - Рис. 1. Энергетическая механизация крыла. энергетическая механизация крыла — устройства для увеличения подъёмной силы крыла, принцип действия которых основан на использовании энергии двигателей летательного аппарата или дополнительных… … Энциклопедия «Авиация»

    Устройства для увеличения подъёмной силы крыла, принцип действия которых основан на использовании энергии двигателей ЛА или дополнительных источников мощности. Э. м. к. применяется для улучшения взлётно посадочных и манёвренных характеристик ЛА,… … Энциклопедия техники

На современных самолетах с целью получения высоких летно-тактических характеристик, в частности для достижения больших скоростей полета, значительно уменьшены и площадь крыла и его удлинение. А это отрицательно сказывается на аэродинамическом качестве самолета и особенно на взлетно-посадочных характеристиках.

Для удержания самолета в воздухе в прямолинейном полете с постоянной скоростью необходимо, чтобы подъемная сила была равна весу самолета - Y = G . Но так как

(30)

Из формулы (30) следует, что для удержания самолета в воздухе на наименьшей скорости (при посадке, например) нужно, чтобы коэффициент подъемной силы С y был наибольшим. Однако С y можно увеличивать путем увеличения угла атаки только до α крит. Увеличение угла атаки больше критического приводит к срыву потока на верхней поверхности крыла и к резкому уменьшению С y , что недопустимо. Следовательно, для обеспечения равенства подъемной силы и веса самолета необходимо увеличить скорость полета .

Вследствие указанных причин посадочные скорости современных самолетов довольно велики. Это сильно усложняет взлет и посадку и увеличивает длину пробега самолета.

С целью улучшения взлетно-посадочных характеристик и обеспечения безопасности на взлете и особенно посадке необходимо посадочную скорость по возможности уменьшить. Для этого нужно, чтобы С y был возможно больше. Однако профили крыла, имеющие большое Су макс, обладают, как правило, большими значениями лобового сопротивления Сх мин , так как у них большие относительные толщина и кривизна. А увеличение Сх. мин , препятствует увеличению максимальной скорости полета. Изготовить профиль крыла, удовлетворяющий одновременно двум требованиям: получению больших максимальных скоростей и малых посадочных - практически невозможно.

Поэтому при проектировании профилей крыла самолета стремятся в первую очередь обеспечить максимальную скорость, а для уменьшения посадочной скорости применяют на крыльях специальные устройства, называемые механизацией крыла.

Применяя механизированное крыло, значительно увеличивают величину Су макс, что дает возможность уменьшить посадочную скорость и длину пробега самолета после посадки, уменьшить скорость самолета в момент отрыва и сократить длину разбега при взлете. Применение механизации улучшает устойчивость и управляемость самолета на больших углах атаки. Кроме того, уменьшение скорости при отрыве на взлете и при посадке увеличивает безопасность их выполнения и сокращает расходы на строительство взлетно-посадочных полос.

Итак, механизация крыла служит для улучшения взлетно-посадочных характеристик самолета путем увеличения максимального значения коэффициента подъемной силы крыла Cу макс .



Суть механизации крыла состоит в том, что с помощью специальных приспособлений увеличивается кривизна профиля (в некоторых случаях и площадь крыла), вследствие чего изменяется картина обтекания. В результате получается увеличение максимального значения коэффициента подъемной силы.

Эти приспособления, как правило, выполняются управляемыми в полете: при полете на малых углах атаки (при больших скоростях полета) они не используются, а применяются лишь на взлете, на посадке, когда увеличение угла атаки не обеспечивает получения нужной величины подъемной силы.

Существуют следующие виды механизации крыла: щитки, закрылки, предкрылки, отклоняемые носки крыла, управление пограничным слоем, реактивные закрылки .

Щиток представляет собой отклоняющуюся поверхность, которая в убранном положении примыкает к нижней, задней поверхности крыла. Щиток является одним из самых простых и наиболее распространенных средств повышения Су макс.

Увеличение Су макс при отклонении щитка объясняется изменением формы профиля крыла, которое можно условно свести к увеличению эффективного угла атаки и вогнутости (кривизны) профиля.

При отклонении щитка образуется вихревая зона подсасывания между крылом и щитком. Пониженное давление в этой зоне распространяется частично на верхнюю поверхность профиля у задней кромки и вызывает отсос пограничного слоя с поверхности, лежащей выше по течению. За счет отсасывающего действия щитка предотвращается срыв потока на больших углах атаки, скорость потока над крылом возрастает, а давление уменьшается. Кроме того, отклонение щитка повышает давление под крылом за счет увеличения эффективной кривизны профиля и эффективного угла атаки α эф .

Благодаря этому выпуск щитков увеличивает разность относительных давлений над крылом и под крылом, а следовательно, и коэффициент подъемной силы Су .

На рис. 42 показан график зависимости С y от угла атаки для крыла с различным положением щитка: убранное, взлетное φ щ = 15°, посадочное φ щ = 40°.

При отклонении щитка вся кривая Су щ = f(α) смещается вверх почти эквидистантно кривой Су = f (α) основного профиля.

Из графика видно, что при отклонении щитка в посадочное положение (φ щ = 40°) приращение Су составляет 50-60%, а критический угол атаки при этом уменьшается на 1-3°.

Для увеличения эффективности щитка конструктивно его выполняют таким образом, что при отклонении он одновременно смещается назад, к задней кромке крыла. Тем самым увеличиваются эффективность отсоса пограничного слоя с верхней поверхности крыла и протяженность зоны повышенного давления под крылом.

При отклонении щитка одновременно с увеличением коэффициента подъемной силы увеличивается и коэффициент лобового сопротивления, аэродинамическое качество крыла при этом уменьшается.

Закрылок . Закрылок представляет собой отклоняющуюся часть задней кромки крыла либо поверхность, выдвигаемую (с одновременным отклонением вниз) назад из-под крыла. По конструкции закрылки делятся на простые (нещелевые), однощелевые и многощелевые .

Рис. 39. Профиль крыла со щитком, смещающимся назад

Рис. 40. Закрылки: а - нещелевой; б - щелевой

Нещелевой закрылок увеличивает коэффициент подъемной силы С y за счет увеличения кривизны профиля. При наличии между носком закрылка и крылом специально спрофилированной щели эффективность закрылка увеличивается, так как воздух, проходящий с большой скоростью через сужающуюся щель, препятствует набуханию и срыву пограничного слоя. Для дальнейшего увеличения эффективности закрылков иногда применяют двухщелевые закрылки, которые дают прирост коэффициента подъемной силы С y профиля до 80%.

Увеличение Су макс крыла при выпуске закрылков или щитков зависит от ряда факторов: их относительных размеров, угла отклонения, угла стреловидности крыла. На стреловидных крыльях эффективность механизации, как правило, меньше, чем у прямых крыльев. Отклонение закрылков, так же как и щитков, сопровождается не только повышением С y , но в еще большей степени приростом С x , поэтому аэродинамическое качество при выпущенной механизации уменьшается.

Критический угол атаки при выпущенных закрылках незначительно уменьшается, что позволяет получить С умакс при меньшем подъеме носа самолета (рис. 37).

Рис. 41. Профиль крыла с щитком

Рис. 42. Влияние выпуска щитков на кривую Су=f()

Рис. 43. Поляра самолета с убранными и выпущенными щитками

Предкрылок представляет собой небольшое крылышко, находящееся впереди крыла (рис. 44).

Предкрылки бывают фиксированные и автоматические.

Фиксированные предкрылки на специальных стойках постоянно закреплены на некотором удалении от носка профиля крыла. Автоматические предкрылки при полете на малых углах атаки плотно прижаты к крылу воздушным потоком. При полете на больших углах атаки происходит изменение картины распределения давления по профилю, в результате чего предкрылок как бы отсасывается. Происходит автоматическое выдвижение предкрылка (рис. 45).

При выдвинутом предкрылке между крылом и предкрылком образуется суживающаяся щель. Увеличиваются скорость воздуха, проходящего через эту щель, и его кинетическая энергия. Щель между предкрылком и крылом спрофилирована таким образом, что воздушный поток, выходя из щели, с большой скоростью направляется вдоль верхней поверхности крыла. Вследствие этого скорость пограничного слоя увеличивается, он становится более устойчивым на больших углах атаки и отрыв его отодвигается на большие углы атаки. Критический угол атаки профиля при этом значительно увеличивается (на 10°-15°), а Cу макс увеличивается в среднем на 50% (рис. 46).

Обычно предкрылки устанавливаются не по всему размаху, а только на его концах. Это объясняется тем, что, кроме увеличения коэффициента подъемной силы, увеличивается эффективность элеронов, а это улучшает поперечную устойчивость и управляемость. Установка предкрылка по всему размаху значительно увеличила бы критический угол атаки крыла в целом, и для его реализации на посадке пришлось бы стойки основных ног шасси делать очень высокими.

Рис. 44. Предкрылок

Рис. 45. Принцип действия автоматического предкрылка:

а - малые углы атаки; б – большие углы атаки

Фиксированные предкрылки устанавливаются, как правило, на нескоростных самолетах, так как такие предкрылки значительно увеличивают лобовое сопротивление, что является помехой для достижения больших скоростей полета.

Отклоняемый носок (рис. 47) применяется на крыльях с тонким профилем и острой передней кромкой для предотвращения срыва потока за передней кромкой на больших углах атаки.

Изменяя угол наклона подвижного носка, можно для любого угла атаки подобрать такое положение, когда обтекание профиля будет безотрывным. Это позволит улучшить аэродинамические характеристики тонких крыльев на больших углах атаки. Аэродинамическое качество при этом может возрастать.

Искривление профиля отклонением носка повышает Су макс крыла без существенного изменения критического угла атаки.

Рис. 46. Кривая Су =f (α) для крыла с предкрылками

Рис. 47. Отклоняемый носок крыла

Управление пограничным слоем (рис. 48) является одним из наиболее эффективных видов механизации крыла и сводится к тому, что пограничный слой либо отсасывается внутрь крыла, либо сдувается с его верхней поверхности.

Для отсоса пограничного слоя или для его сдувания применяют специальные вентиляторы либо используют компрессоры самолетных газотурбинных двигателей.

Отсасывание заторможенных частиц из пограничного слоя внутрь крыла уменьшает толщину слоя, увеличивает его скорость вблизи поверхности крыла и способствует безотрывному обтеканию верхней поверхности крыла на больших углах атаки.

Сдувание пограничного слоя увеличивает скорость движения частиц воздуха в пограничном слое, тем самым предотвращает срыв потока.

Управление пограничным слоем дает хорошие результаты в сочетании с щитками или закрылками.

Рис. 48. Управление пограничным слоем

Рис. 49. Реактивный закрылок


Реактивный закрылок (рис. 49) представляет струю газов, вытекающую с большой скоростью под некоторым углом вниз из специальной щели, расположенной вблизи задней кромки крыла. При этом струя газа воздействует на поток, обтекающий крыло, подобно отклоненному закрылку, вследствие чего перед реактивным закрылком (под крылом) давление повышается, а позади его понижается, вызывая увеличение скорости движения потока над крылом. Кроме того образуется реактивная сила Р , создаваемая вытекающей струёй.

Эффективность действия реактивного закрылка зависит от угла атаки крыла, угла выхода струи и величины силы тяги Р . Их используют для тонких, стреловидных крыльев малого удлинение Реактивный закрылок позволяет увеличить коэффициент подъемной силы Cу макс в 5-10 раз . Для создания струи используются газы, выходящие из турбореактивного двигателя.