Правила знаков для поперечной силы и изгибающего момента. Правило знаков изгибающих моментов и поперечных сил Типы опор балок

Действие одной силы или системы сил на твёрдое тело может быть связано не только с поступательным, но и с вращательным движением. Как известно, силовым фактором вращательного движения является момент силы.

Рассмотрим гайку, которую затягивают гаечным ключом определённой длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то, прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы .

Понятие момента силы относительно точки ввёл в механику итальянский учёный и художник эпохи Возрождения Леонардо да Винчи.

Моментом силы относительно точки называется произведение модуля силы на ее плечо (рис. 5.1):

Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы.

Единица момента силы в системе СИ:

[М] = [Р] · [h] = сила длина = ньютон метр = Н м .

Рис. 5.1. Момент силы относительно точки

б )

Рис. 6.1

Понятие пары сил введено в механику в начале XIX в. французским учёным Пуансо, который разработал теорию пар. Рассмотрим основные понятия.

Любые две силы, кроме сил, образующих пару, можно заменить равнодействующей. Пара сил не имеет равнодействующей, и никакими способами пару сил нельзя преобразовать к одной эквивалентной силе. Пара – такой же самостоятельный простейший механический элемент, как и сила.

Плоскость, в которой лежат силы, образующие пару, называют плоскостью действия пары . Кратчайшее расстояние между линиями сил, образующих пару, называют плечом пары h . Произведение модуля одной из сил пары на её плечо называют моментом пары и обозначают

М = ± Ph . (6.1)

Действие пары на тело характеризуется моментом, стремящимся вращать тело. При этом, если пара сил вращает тело против часовой стрелки, то момент такой пары считается положительным, если по часовой стрелке, то момент считается отрицательным.

Свойства пар

Не изменяя действия на тело, пару сил можно:

1) как угодно перемещать в её плоскости;

2) переносить в любую плоскость, параллельную плоскости действия этой пары;

3) изменять модуль сил и плечо пары, но так, чтобы ее момент (т. е. произведение модуля силы на плечо) и направление вращения оставались неизменными;

4) алгебраическая сумма проекций сил, образующих пару, на любую ось равна нулю;

5) алгебраическая сумма моментов сил, образующих пару, относительно любой точки постоянна и равна моменту пары.

Две пары считают эквивалентными, если они стремятся вращать тело в одну сторону и их моменты численно равны. Пару может уравновесить только другая пара с моментом, имеющим противоположный знак.

Сложение пар

Система пар, лежащих в одной плоскости или параллельных плоскостях, эквивалентна одной равнодействующей паре , момент которой равен алгебраической сумме моментов слагаемых пар, т. е.

Равновесие пар

Плоская система пар находится в равновесии, если алгебраическая сумма моментов всех пар равна нулю, т. е. .

Часто бывает удобным представить момент пары в виде вектора. Вектор-момент пары направлен перпендикулярно к плоскости действия пары в сторону, откуда вращательное действие пары наблюдается против часовой стрелки (рис. 6.2).

Рис. 6.2. Вектор-момент пары сил

Пример 7. На балку, свободно опирающуюся на гладкий уступ А и шарнирно укреплённую в точке В, действует пара с моментом М = 1500 Нм. Определить реакции в опорах, если l = 2 м (рис. 6.3, а ).

Решение . Пару может уравновесить только другая пара с равным, но противоположно направленным моментом (рис. 6.3, б ). Следовательно,

Инструкция

Пусть Q – точка, относительно которой рассматривается момент силы. Эта точка называется полюсом. Проведите радиус-вектор r из этой точки к точке приложения силы F. Тогда момент силы M определяется как векторное произведение r на F: M=.

Результатом векторного произведения является вектор. Длина вектора выражается модулем: |M|=|r|·|F|·sinφ, где φ – угол между r и F. Вектор M ортогонален как вектору r, так и вектору F: M⊥r, M⊥F.

Направлен вектор M таким образом, что тройка векторов r, F, M является правой. Как определить, что тройка векторов именно правая? Представьте себе, будто вы (ваш глаз) находитесь на конце третьего вектора и смотрите на два других вектора. Если кратчайший переход от первого вектора ко второму кажется происходящим против часовой стрелки, это правая тройка векторов. В противном случае, вы имеете дело с левой тройкой.

Итак, совместите начала векторов r и F. Это можно сделать параллельным переносом вектора F в точку Q. Теперь через эту же точку проведите ось, перпендикулярную плоскости векторов r и F. Данная ось будет перпендикулярна векторам сразу. Тут возможны, в принципе, только два варианта направить момент силы: вверх или вниз.

Попробуйте направить момент силы F вверх, нарисуйте стрелочку вектора на оси. Из этой стрелочки как бы взгляните на вектора r и F (можете символический глаз). Кратчайший переход от r к F можете обозначить закругленной стрелочкой. Является ли тройка векторов r, F, M правой? Стрелочка указывает направление против часовой стрелки? Если да, то вы верное направление для момента силы F. Если же нет, значит, надо сменить направление на противоположное.

Определить направление момента силы можно также по правилу правой руки. Указательный палец совместите с радиус-вектором. Средний палец совместите с вектором силы. С конца поднятого вверх большого пальца посмотрите на два вектора. Если переход от указательного к среднему пальцу осуществляется против часовой стрелки, то направление момента силы совпадает с направлением, которое указывает большой палец. Если переход идет по часовой стрелке, то направление момента силы противоположно ему.

Правило буравчика очень похоже на правило руки. Четырьмя пальцами правой руки как бы вращайте винт от r к F. Векторное произведение будет иметь то направление, куда закручивается буравчик при таком мысленном вращении.

Пусть теперь точка Q располагается на той же прямой, которая содержит вектор силы F. Тогда радиус-вектор и вектор силы будут коллинеарны. В этом случае их векторное произведение вырождается в нулевой вектор и изображается точкой. Нулевой вектор не имеет никакого определенного направления, но считается сонаправленным любому другому вектору.

Чтобы правильно рассчитать действие силы, вращающей тело, определите точку ее приложения и расстояние от этой точки до оси вращения. Это важно для определения технических характеристик различных механизмов. Крутящий момент двигателя можно рассчитать, если известна его мощность и частота вращения.

Вам понадобится

  • Линейка, динамометр, тахометр, тестер, тесламетр.

Инструкция

Определите точку или ось, вокруг которой тело. Найдите точку приложения силы. Соедините точку приложения силы и точку вращения, или опустите перпендикуляр на ось вращения. Измерьте это расстояние, оно «плечо силы». Измерение проводите в метрах. Силу измерьте в ньютонах с помощью динамометра. Измерьте угол между плечом и вектором силы. Для расчета вращающего момента найдите произведение силы и синус угла между ними M=F r sin(α). Результат получите в ньютонах на метр.

Момент силы относительно точки О - это вектор, модуль которого равен произведению модуля силы на плечо - кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой стрелке.

Если известен радиус-вектор точки приложения силы относительно точки О, то момент этой силы относительно О выражается следующим образом:

Действительно, модуль этого векторного произведения:

. (1.9)

В соответствии с рисунком , поэтому:

Вектор , как и результат векторного произведения, перпендикулярен векторами, которые принадлежат плоскости Π. Направление векторатаково, что глядя по направлению этого вектора, кратчайшее вращение откпроисходит по часовой стрелке. Другими словами, вектордостраивает систему векторов () до правой тройки.

Зная координаты точки приложения силы в системе координат, начало которой совпадает с точкой О, и проекцию силы на эти оси координат, момент силы может быть определен следующим образом:

. (1.11)

Момент силы относительно оси

Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку, называется моментом силы относительно оси.

Момент силы относительно оси вычисляется как момент проекции силы на плоскость Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π:

Знак момента определяется направлением вращения, которое стремится придать телу сила F⃗ Π. Если, глядя по направлению оси Oz сила вращает тело по часовой стрелке, то момент берется со знаком ``плюс"", иначе - ``минус"".

1.2 Постановка задачи.

Определение реакций опор и шарнира С.

1.3 Алгоритм решения задачи.

Разделим конструкцию на части и рассмотрим равновесие каждой из конструкции.

Рассмотрим равновесие всей конструкции в целом. (рис.1.1)

Составим 3 уравнения равновесия для всей конструкции в целом:

Рассмотрим равновесие правой части конструкции.(рис 1.2)

Составим 3 уравнения равновесия для правой части конструкции.

Базовый курс лекций по сопромату, теория, практика, задачи.
3. Изгиб. Определение напряжений.

3.4. Правило знаков для изгибающих моментов и поперечных сил.

Поперечная сила в сечении балки mn (рис. 3.7, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена снизу вверх, а справа - сверху вниз, и отрицательной - в противоположном случае (рис. 3.7, б).

Изгибающий момент в сечении балки, например в сечении mn (рис. 3.8, а), считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по часовой стрелке, а справа - против часовой стрелки, и отрицательным в противоположном случае (рис. 3.8, б). Моменты, изображенные на рис. 3.8, а, изгибают балку выпуклостью вниз, а моменты, изображенные на рис. 3.8, б, изгибают балку выпуклостью вверх. Это можно легко проверить, изгибая тонкую линейку.

Отсюда следует другое, более удобное для запоминания правило знаков для изгибающего момента. Изгибающий момент считается положительным, если в рассматриваемом сечении балка изгибается выпуклостью вниз. Далее будет показано, что волокна балки, расположенные в вогнутой части, испытывают сжатие, а в выпуклой - растяжение. Таким образом, условливаясь откладывать положительные ординаты эпюры М вверх от оси, мы получаем, что эпюра оказывается построенной со стороны сжатых волокон балки.


Теоретическая механика. Статика :

Система сходящихся сил
Определение и теорема о трех силах
Графическое определение равнодействующей сходящихся сил
Аналитическое задание силы
Аналитическое определение равнодействующей сходящихся сил
Условия и уравнения равновесия системы сходящихся сил
Решение задач
★ Равновесие под действием сходящейся системы сил

Теория пар сил

Пара сил и ее свойства
Теоремы об эквивалентности пар
Сложение пар сил
Равновесие систем пар

Приведение плоской системы сил
Лемма Пуансо
Теорема о приведении плоской системы сил
Частные случаи приведения плоской системы сил
Уравновешенная система сил

Определение опорных реакций плоских стержневых систем
★ Равновесие под действием системы параллельных сил на плоскости
Система параллельных сил
Произвольная плоская система сил
Произвольная плоская система сил. РГР 1
★ Равновесие плоской произвольной системы сил
Расчет составных систем
Расчет составных систем. РГР 2
★ Равновесие системы тел 1
★ Равновесие системы тел 2
★ Равновесие системы тел 3
Графическое определение опорных реакций

subjects:termeh:statics:момент_силы_относительно_центра

Рассмотрим тело, которое закреплено в центре О и может поворачиваться вокруг оси, проходящей через точку О и перпендикулярной к плоскости чертежа. Приложим в точке А этого тела силу P и выясним, чем определяется вращательное действие этой силы (Рис.1 ).

Очевидно, что воздействие силы на тело будет зависеть не только от ее величины, но и от того, как она направлена, и в конечном итоге будет определяться ее моментом относительно центра О .

Определение 1. Моментом силы Р относительно центра О называется взятое со знаком $\pm$ произведение модуля силы на ее плечо – то есть длину перпендикуляра, опущенного из моментной точки на линию действия силы.

Правило знаков: момент силы считается положительным, если сила стремится повернуть тело против хода часовой стрелки и отрицательным, если она вращает тело по ходу часовой стрелки.

В соответствии с данным определением момент силы численно равен удвоенной площади треугольника OAB, построенного на векторе силы P с вершиной в моментной точке: $M_0(P) = P\cdot d = 2S\Delta_{OAB}$ .

Отметим, что момент силы относительно точки О равен нулю, если линия действия силы проходит через моментную точку .

Рассмотренное определение момента силы подходит только для плоской системы сил. В общем случае для однозначного описания вращательного действия силы введем следующее определение.

Определение 2. Вектор-моментом силы Р относительно центра О называется вектор, который:

    приложен в моментной точке О перпендикулярно к плоскости треугольника, построенного на векторе силы с вершиной в моментной точке ;

    направлен по правилу право винта ;

    равен по модулю моменту силы Р относительно центра О ( Рис.1а ).

Правило правого винта , известное также из курса физики как правило буравчика , означает, что если смотреть навстречу вектор-моменту $\vec{М_0}(\vec{P})$ , мы увидим вращение силой $\vec{P}$ плоскости своего действия, происходящим против хода часовой стрелки .

Обозначим через $\vec{r}$ радиус-вектор точки приложения силы $\vec{P}$ и докажем, что справедлива следующая

Теорема 1. Вектор-момент силы $\vec{P}$ относительно центра О равен векторному произведению радиус-вектора $\vec{r}$ и вектора силы $\vec{P}$ :

$$\vec{M_0}(\vec{P}) = (\vec{r} \times \vec{P})$$

Напомним, что векторным произведением векторов $\vec{a}\text{ и }\vec{b}$ называется вектор $\vec{c}$ , который (Рис.2б ):

    перпендикулярен к векторам $\vec{a}\text{ и }\vec{b}$ ;

    образует с ними правую тройку векторов, то есть, направлен так, что, смотря навстречу этому вектору, мы увидим поворот от вектора $\vec{a}$ к вектору $\vec{b}$ на наименьший угол происходящим против хода часовой стрелки;

    равен по модулю удвоенной площади треугольника, построенного на этих векторах:

$$|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}|\cdot|\vec{b}|\cdot\sin(\vec{a},\,\vec{b})$$

Для доказательства теоремы отметим, во-первых, что вектор, равный векторному произведению векторов $\vec{r}\text{ и }\vec{P}$ будет коллинеарным вектору $\vec{M_0}(\vec{P})$.

Чтобы убедиться в этом, достаточно отложить эти векторы от одной точки (Рис.1в ). Итак, $(\vec{r} \times \vec{P}) \uparrow \uparrow \vec{M_0}(\vec{P})$.

Во-вторых, модуль векторного произведения этих векторов будет равен:

$$|\vec{r} \times \vec{P}| = |\vec{r}|\cdot|\vec{P}|\cdot\sin(\vec{r},\,\vec{P}) = P \cdot d =|\vec{M_0}(\vec{P})|$$

Откуда и следует соотношение теоремы.

Следствием этой теоремы является:

Теорема Вариньона (о моменте равнодействующей сходящихся сил). Вектор- момент равнодействующей системы сходящихся сил относительно произвольного центра О равен геометрической сумме вектор-моментов всех сил системы относительно этого центра:

$$\vec{M_0}(\vec{R}) = \sum_{i=1}^{i=n}\vec{M_{0\,\,i}}(\vec{P_i})$$

В самом деле, момент равнодействующей, с учетом теоремы 1 и аналитического определения равнодействующей сходящихся сил , будет равен:

$$ \vec{M_0}(\vec{R})= \vec{R}\times\vec{r} \,\,\,\;\;\text{ , т.к. } \vec{M_0}(\vec{P}) = (\vec{r} \times \vec{P}) \\ \vec{R}\times\vec{r}= \vec{r}\times\sum_{i=1}^{i=n}\vec{P_i} \,\,\,\;\;\text{ , т.к. } (\vec{P_1}, \vec{P_2}, \dots, \vec{P_n}) \sim \vec{R} = \sum_{i=1}^{i=n} \vec{P_i} \\ \vec{r}\times\sum_{i=1}^{i=n}\vec{P_i} = \sum_{i=1}^{i=n}(\vec{r}\times\vec{P_i}) = \sum_{i=1}^{i=n}\vec{M_{0\,\,i}}(\vec{P_i}) $$

Для плоской системы сходящихся сил геометрическая сумма в теореме Вариньона переходит в алгебраическую:

$$M_0(R)=\sum_{i=1}^{i=n}M_{0\,\,i}(\vec{P_i})$$

Примечание

    В учебной литературе термин «момент» применяют для обозначения как момента силы, так и ее вектор-момента.

subjects/termeh/statics/момент_силы_относительно_центра.txt · Последние изменения: 2013/07/19 19:53 - ¶