Преобразование напряжения сигнала в ток. Преобразователь тока в напряжение на оу Микросхема для преобразователя напряжения в ток схема

Большой собственный коэффициент усиления ОУ приводит к тому, что инвертирующий вход является виртуальной землей, поэтому протекающий через резистор R ОС ток равен току I ВХ. Следовательно, выходное напряжение определяется соотношением U ВЫХ = -R ОС I ВХ.

Показанная на рис. 4.3 схема хорошо подходит для измерения малых токов - от десятков миллиампер и менее, вплоть до долей пикоампера. Верхний предел тока ограничивается выходным током ОУ. Недостаток схемы состоит в том, что ее нельзя включать в произвольной точке контура с током, так как входной ток должен замыкаться на землю.

Коэффициент преобразования

где A V - коэффициент усиления ОУ и R ЭКВ - эквивалентное сопротивление между входом ОУ и землей, включающее в себя сопротивление источника тока и дифференциальное входное сопротивление ОУ.

Входное сопротивление:

Выходное напряжение смещения:

где U СМ.ВХ - входное напряжение смещения ОУ,

I СМ,ВХ - входной ток смещения ОУ.

Нижний предел измеряемого тока определяется входным напряжением смещения, входными токами ОУ и их дрейфами. Для того, чтобы свести к минимуму погрешности схемы, учтите следующие моменты.

1. Погрешности смещения.

При малых входных токах (менее 1 мкА) лучше использовать ОУ с полевыми входами, имеющие незначительные входные токи.

Нужно стремиться к тому, чтобы выполнялось условие R ЭКВ >> R ОС, так как иначе входное напряжение смещения будет дополнительно усиливаться.*

Погрешность, связанную с входными токами, можно уменьшить, включая дополнительный резистор, равный R ОС , между неинвертирующим входом и землей. При этом общее входное смещение будет равно:

U СМ.ВХ + R ОС ΔI СМ.ВХ,где ΔI СМ.ВХ - разность входных токов ОУ.

Для ограничения высокочастотных шумов дополнительного резистора и предотвращения самовозбуждения ОУ можно параллельно ему включить шунтирующий конденсатор (10 нФ - 100 нФ).

Соблюдайте аккуратность при работе с очень малыми токами, потому что значительные погрешности могут быть связаны с токами утеч­ки. Используйте охранное кольцо (рис. 4.4) для того, чтобы токи утечки замыкались на него, а не на вход схемы. Охранные кольца должны быть на обеих сторонах платы. Плату нужно тщательно очистить и изолировать для предотвращения поверхностной утечки. Наконец, для получения очень малых токов утечки (порядка пикоампер) при монтаже входных цепей можно использовать дополнительные стойки из фторопласта.

Чтобы уменьшить дрейф входных токов от температуры, следует ограничить тепло, выделяемое самим ОУ. Для этого лучше снизить напряжение питания до минимума. Кроме того, к выходу ОУ не стоит подключать низкоомную нагрузку (общее сопротивление на­грузки должно быть не менее 10 кОм).


При измерении малых токов регулировать смещение лучше в после­дующих каскадах схемы, или воспользоваться подходом, показан­ным на рис. 4.7, при котором не требуется слишком высокая чув­ствительность усилителя.

2. Погрешности коэффициента усиления.

ОУ и резистор обратной связи необходимо выбирать так, чтобы A V R ЭКВ >> R ОС, иначе могут возникнуть большие погрешности ко­эффициента усиления и нелинейность характеристики. Необходимо подобрать прецизионные резисторы с малым дрейфом. Лучше всего использовать высокостабильные резисторы на основе металлических или металлоокисных пленок. Лучшей конструкцией для высокоом-ных резисторов (более 1 ГОм) является стеклянный корпус, покры­тый силиконовым лаком для исключения влияния влажности. Не­которые резисторы имеют внутренний металлический защитный экран.

Чтобы не использовать резисторы слишком больших номиналов (у них низкая стабильность и они довольно дороги), можно использовать Т-образную обратную связь (рис. 4.5).

Такое соединение позволяет повысить коэффициент преобразования без использования высокоомных резисторов, но это возможно только при достаточном запасе собственного коэффициента усиления ОУ. Отметим, что монтаж схемы должен быть выполнен так, чтобы предотвратить шунтирование Т-звена сопротивлением утечки, т.е. обеспечить хорошую изоляцию точек А и В. Т-образное соединение имеет серьезный недостаток, заключающийся в усилении напряжения смещения ОУ А1в (R2 + R1)/R1раз, что иногда может ограничить его применение.

3. Частотная характеристика.

Конечная емкость источника сигнала Си может привести к неустойчивости схемы, особенно при использовании длинных входных кабелей. Этот конденсатор на высоких частотах вносит фазовое за­паздывание в петле обратной связи ОУ. Проблема решается включением конденсатора небольшой емкости C ОС параллельно резистору R ОС , графическая иллюстрация этого способа показана на рис. 4.6.


Выходной шум схемы складывается из трех основных компонентов: шум резистора R ОС , входное шумовое напряжение ОУ А1и входной шумовой ток ОУ А1.

Для ОУ с большим коэффициентом усиления при R ОС > 1 МОм преобладает шум, генерируемый резистором R ОС .

Входное шумовое напряжение ОУ умножается на коэффициент усиления для шума (рис. 4.6). Как правило, этот коэффициент возрастает с ростом частоты, что ведет к появлению значительного высокочастотного шума.

Входной шумовой ток ОУ А1умножается на величину R ОС , и в таком виде появляется на входе.

5. Помехи.

Преобразователи тока в напряжение с большим усилением являются высокочувствительными, высокоомными схемами. Поэтому для защиты от помех их необходимо заключать в экранирующий корпус. Важное значение имеет хорошая развязка по питанию. Наконец, эти схемы могут быть очень чувствительными к механическим вибрациям.

На рис. 4.7 показана схема усилителя сигнала фотодиода. Для регу­лировки смещения используется потенциометр.

Введение

3. Повышение линейности ПНТ

4. Исследование ПНТ

Библиографический список


Введение

Преобразователи напряжение-ток (ПНТ) также являются важным элементом в схемотехнике аналоговых электронных устройств. На их основе могут быть выполнены различные прецизионные операционные усилители, в которых ПНТ используется как входной дифференциальный каскад; ПНТ органично входят в структуры АПН и могут использоваться в различных измерительных схемах.


1. Простейшие преобразователи напряжения в ток

Принцип преобразования напряжения в ток может быть проиллюстрирован с помощью простейшего усилительного каскада на одиночном транзисторе (рис. 1). (Отметим, что резистор R1 выполняет функцию подключения коллектора к шине питания; он достаточно низкоомный и служит как датчик тока при измерении тока коллектора.)

Рис. 1. Простейший преобразователь напряжение-ток на одиночном транзисторе

Предположим, что напряжение смещения UC транзистору обеспечивает источник сигнала UС. Тогда для тока эмиттера IЭ транзистора может быть записано следующее уравнение:

. (1)

Оценивать качество преобразования входного напряжения в выходной ток (ток коллектора IK транзистора) наиболее просто, находя крутизну прямого преобразования S:


при условии, что a» 1.

Находить производную от выражения (1) в явном виде – достаточно громоздкая процедура, поэтому можно найти производную dUC/dIk, а затем взять обратную величину:

, . (2)

Выражение (2) показывает, что качество преобразования входного напряжения в выходной ток существенным образом зависит от дифференциального сопротивления эмиттера транзистора, которое, в свою очередь, зависит от тока эмиттера, а следовательно, от входного напряжения. Таким образом, простейший ПНТ обладает двумя существенными недостатками:

Нелинейностью крутизны преобразования;

Отсутствие возможности осуществлять преобразование двухполярных сигналов.

2. ПНТ на основе дифференциальных каскадов

Обеспечить преобразование двухполярных сигналов можно с помощью ПНТ на основе дифференциального каскада с последовательной отрицательной обратной связью по току в эмиттерной цепи (рис. 2а).


Рис. 2. Преобразователь напряжение-ток а) и его проходная характеристика б)

Для схемы ПНТ (рис. 2а), воспользовавшись вторым правилом Кирхгофа, можно записать следующее уравнение для узловых потенциалов:

, (3)

где jT – температурный потенциал;

IХ – приращение тока через резистор R1 при воздействии входного напряжения UX.

С учётом того, что разность напряжений база-эмиттер можно представить как:

,

проходная характеристика такого звена (рис. 2б) может быть представлена следующим образом:

. (4)

Очевидно, что нелинейная составляющая в проходной характеристике определяется первым слагаемым в выражении (4).

Достаточно удобным способом оценки погрешности такого преобразователя, обусловленной нелинейностью, может служить нахождение отклонения реальной функции IХ /I0 (кривая 2 на рис. 2б) от её линейного приближения (кривая 1 на рис. 1б). Отметим, что кривая 2 (рис. 2б) представляет собой разность выходных токов коллекторов транзисторов дифференциальной пары.

Отклонение от линейности можно представить следующим образом:

, (5)

где SX=dIX /dUX – крутизна прямой передачи, определяемая из выражения (4);

dIX – абсолютное отклонение тока;

S0 =I0 /U0 – крутизна прямой передачи при линейном приближении;

I0 – максимальный выходной ток преобразователя при подаче на вход максимального напряжения U0.

Отметим, что SX(0) = S0, поэтому:

; (6) , (7)

где rE = jT/I0 – дифференциальное выходное сопротивление транзисторов VT1, VT2 со стороны эмиттера при начальном токе I0; X=IX/I0.

Подставляя (6) и (7) в (8), получаем:


, (8)

поскольку при g << 1 можно положить IX/I0 »UX/U0.

Формула (5) справедлива при относительно малых погрешностях преобразования – меньше 2-3 %. В этом случае при моделировании относительное отклонение от линейности можно представить как:

преобразователь ток напряжение

, (8а)

где SМАКС – максимальное значение крутизны на участке ±U0.

Из (8) следует, что приемлемых уровней погрешности (меньше 0,1 %) можно достичь только при выполнении условий: R1/2rE > 500 и относительном изменении тока X<0,75. Для ПНТ, работающих при питающих напряжениях ±15 В, эти условия могут быть легко реализованы. Для низковольтных схем (при их питании от напряжений меньше ±5 В) выполнение этих условий приведёт к резкому снижению крутизны преобразования входного напряжения в выходной ток, повышению уровня шумов и т.д.

Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера.

3. Повышение линейности ПНТ

Каким же образом можно уменьшить влияние дифференциального сопротивления эмиттера на работу подобного ПНТ?

Одним из способов снижения влияния дифференциального сопротивления эмиттеров транзисторов служит введение отрицательной обратной связи.

Упрощённая принципиальная схема ПНТ с операционными усилителями в цепи обратной связи приведена на рисунке 3.

Рис. 3. Упрощённая схема ПНТ с операционными усилителями

В этой схемотехнической конфигурации повышение линейности достигается за счёт того, что разность напряжений между входами операционного усилителя имеет достаточно малое значение, которое практически не меняется, значение дифференциального сопротивления эмиттера делится в петлевое усиление раз, что можно описать выражением:

, (9)

где К – коэффициент усиления по напряжению операционного усилителя.

Из (9) можно получить выражение для крутизны преобразования входного напряжения в ток:

, (10)

то есть влияние нелинейной составляющей ослабляется в петлевое усиление раз.

С точки зрения линейности, такая схема обладает наилучшей линейностью преобразования напряжения в ток (при достаточно большом коэффициенте усиления операционного усилителя), практически не требует настройки, однако достаточно сложна и обладает полосой пропускания, определяемой операционным усилителем.

На рисунке 4 приведён достаточно простой вариант реализации такой схемы при интегральном исполнении, однако, как видно из рисунка, он весьма громоздок, причём на рисунке отсутствуют реальные источники тока.


Рис. 4. Схема ПНТ с линеаризацией крутизны преобразования за счёт ООС

В связи с вышеизложенным схему ПНТ (рис. 4) целесообразно использовать только при интегральном исполнении. Кроме того, следует помнить, что частотные свойства такого преобразователя будут не очень хорошими по сравнению с ПНТ на одиночном дифференциальном каскаде.

Другой способ устранения нелинейности преобразования демонстрируется схемой ПНТ, представленной на рисунке 5. Этот способ компенсации нелинейности получил достаточно широкое распространение . Суть его заключается в следующем: тем или иным способом формируется компенсирующий ток, ослабляющий влияние изменения rE дифференциального каскада при изменении тока эмиттера.

Работает схема ПНИ (рис. 5) следующим образом. Транзисторы VT1 и VT6, образующие дифференциальный каскад, с помощью резистора R1 осуществляют преобразование входного напряжения в выходной ток. Транзисторы VT2 и VT5 включены по схеме с общей базой и передают токи коллекторов транзисторов VT1 и VT6 на выход с коэффициентом передачи α » 1. Одновременно с этим при изменении токов эмиттеров транзисторов VT2 и VT5 меняются и их напряжения база-эмиттер. В этом случае меняется и разность напряжений база-эмиттер транзисторов VT2 и VT5, причём в зависимости от знака приращения входного напряжения UX разность напряжений база-эмиттер транзисторов VT2 и VT5 также меняет знак. Вспомогательный дифференциальный каскад на транзисторах VT3 и VT4 с помощью резистора RK преобразует напряжение, пропорциональное разности баз-эмиттер транзисторов VT2 и VT5, в ток, который перекрёстным образом отправляется на токовые выходы ПНТ. Поскольку в базовой схеме ПНТ на транзисторах VT1 и VT6 присутствует составляющая, обусловленная DUБЭ1,6 этих транзисторов, то при условии, что транзисторы VT2 и VT5 в точности идентичны транзисторам VT1 и VT6, а токи источников опорного тока одинаковы, выбором сопротивления резистора RK можно скомпенсировать влияние DUБЭ1,6.

В однополярном преобразователе напряжение-ток, схема которого показана на Рисунке 1, использовано классическое включение операционного усилителя IC2a и NPN транзистора Q1. Стабилизируемый ток течет через эмиттерный резистор R E , который выполняет здесь роль простейшего пассивного преобразователя ток-напряжение. Фактическим напряжением отрицательной обратной связи в цепи регулирования является напряжение на инвертирующем входе IC2a. Зона нечувствительности на вольтамперной характеристике создается током, текущим от источника опорного напряжения V REF через резисторы R D и R E в землю. Источником опорного напряжения V REF служат двухвыводная микросхема шунтового регулятора IC1, резистивный делитель Ra, Rb и операционный усилитель IC2b.

Для оценки ширины зоны нечувствительности, прежде всего, представим, что V IN равно нулю. Операционный усилитель стремится смещать к нулю также и напряжение V ED . Однако стать равным нулю V ED не может, поскольку переход база-эмиттер транзистора Q1 в это время работает, как диод, смещенный в обратном направлении. В результате эмиттерный ток Q1 равен нулю, откуда следует, что падение напряжения на резисторе R E равно:

Поскольку это же напряжение приложено к инвертирующему входу операционного усилителя, его выход находится в отрицательном насыщении.

При увеличении V IN никаких изменений не будет происходить до тех пор, пока входное напряжение не превысит напряжение V ED , данное Уравнением 1. С этого момента выходное напряжение операционного усилителя IC2a станет положительным, и через эмиттер Q1 потечет ток. С ростом V IN будет расти ток эмиттера Q1. Из-за сильной отрицательной обратной связи зависимость тока I C от V IN остается линейной до тех пор, пока входное напряжение находится в диапазоне от V ED до V REF . Для оценки величины выходного тока на границе рабочего диапазона при V IN = V REF нужно принять во внимание, что на обоих выводах резистора напряжение одинаково и равно V REF , так что ток через резистор не течет. Поэтому эквивалентное сопротивление эмиттера равно самому эмиттерному сопротивлению R E , а ток эмиттера равен V REF /R E .

Выходной ток, текущий через коллектор Q1 и положительный вывод питания, очень незначительно отличается от тока эмиттера:

где β - коэффициент передачи тока Q1. На Рисунке 2 показана вольтамперная характеристика преобразователя.

При коэффициенте передачи тока транзистора приблизительно равном 230 коллекторный ток меньше эмиттерного на 0.44%. Чтобы снизить эту ошибку можно заменить Q1 либо составным транзистором Дарлингтона, либо каскадным соединением двух биполярных транзисторов. Входное напряжение V IN можно снимать непосредственно с движка потенциометра P1, или же брать от внешнего источника.

Если, к примеру, вы выбрали V DB = 0.1×V REF , V DB = V ED то из Уравнения 1 будет следовать R D = 9R E . Теоретическая зависимость выходного тока от входного напряжения представлена графиком на Рисунке 2.

Измерения, проведенные на макете схемы, показали, что V REF = 0.19645 В, а напряжение V ED на эмиттере при максимальном входном напряжении равно 0.19660 В.

Напряжение V DB определялось путем измерения значений V IN в моменты резких изменений выходного напряжения IC2a с нулевого на положительное и наоборот. Было определено, что для положительных переходов V DB = 19.75 мВ, а для отрицательных V DB = 19.70 мВ.

Министерство Образования РФ

Новосибирский Государственный Технический Университет

Кафедра ССОД

Курсовой проект по дисциплине:

«СХЕМОТЕХНИКА»

Преобразователь тока в напряжение

Выполнила: Проверил:

Голдобина Елена Пасынков Ю.А.

Группа: АО-91

Факультет: АВТ

НОВОСИБИРСК-2001

1. Введение

2. Технические данные для проектирования

3. Структурная схема преобразователя

4. Уравнение преобразования

5. Анализ погрешностей

6. Принципиальная схема

7. Расчет инструментальных погрешностей

8. Заключение

9. Список используемой литературы

10. Спецификация элементов

Введение

В настоящее время существуют различные преобразователи физических величин, например: напряжения в ток, сопротивления в постоянное напряжение, частоты в напряжение.

Преобразователи одной величины в другую широко применяются в радиоэлектронике, микроэлектронике и системах сбора и обработки данных. При построении таких преобразователей используются операционные усилители. Это позволяет значительно увеличить выходное сопротивление схемы, тем самым, уменьшив влияние на работу последующих звеньев.

2. Технические данные для проектирования.

а) Основные данные

б) Дополнительные

3. Структурная схема преобразователя.

Схему преобразователя структурно можно представить в следующем виде:


2) – усилитель

I BX – входной ток

U ВЫХ – номинальное напряжение на выходе.

4. Уравнение преобразования тока в напряжение.


Сопротивление R3 равное параллельному соединению R1 и R2 включено в цепь для устранения погрешности от входных токов.

Сопротивление R кор -корректирующее – включено в схему для устранения погрешности от допусков резисторов (R кор = 10 Ом)

Выходное напряжение прямо пропорционально току, сопротивлению шунта и коэффициенту усиления масштабного усилителя:

Расчет элементов схемы:

Начальные данные:

.

Выбор операционного усилителя.

Выберем операционный усилитель с малым температурным дрейфом E см для того чтобы минимизировать погрешность от влияния дрейфа.

Возьмем ОУ 140УД21.(ТКЕ см =0,5·10 -6 В, I вх =0,5нА, ΔI вх =0,5нА, К=1000000 U вых =10,5В М сф =110 дБ).

Расчет резисторов.

Выберем шунт с номинальным напряжением U шном =30мВ.

Сопротивление шунта , следовательно входное сопротивление преобразователя равно 3 мОм, что соответствует заданным параметрам.

Напряжение на входе усилителя равно U шном. На выходе необходимо получить напряжение U вых =1В. Следовательно, коэффициент усиления с обратной связью

.

I R – ток протекающий через сопротивления R1, R2.

где, I вх_оу – входной ток операционного усилителя, К – коэффициент усиления без обратной связи.

Решая данную систему, находим значения резисторов.

R1 = 60 Ом R2 = 1900 Ом.

5. Анализ погрешностей

В данной схеме присутствует только инструментальная погрешность, так как методическая погрешность, связанная с сопротивлением источника, равна нулю (считаем, что источник идеальный, т.е. его внутреннее сопротивление равно ∞).

Поэтому рассмотрим только инструментальные погрешности:

1. Погрешность от допусков резисторов.

Данная погрешность устраняется путем ввода в систему корректирующего сопротивления, равного 10 Ом.

2 . Погрешность от ТКС резисторов

3. Погрешность от дрейфа Е см.

Влияние этой погрешности будет рассмотрено ниже.

4. Погрешность от Е см усилителя.

Эта погрешность устраняется с помощью подстроечного резистора R4.

5. Погрешность от входных токов.

Эта погрешность устраняется путем включения в преобразователь сопротивления R3, равного параллельному сопротивлению R1 и R2.

6. Погрешность от дрейфа Δ I ВХ .

Воздействие этой погрешности также рассматривается ниже.

7. Погрешность от коэффициента подавления синфазного сигнала.

Воздействие этой погрешности будет рассмотренно ниже.

7. Расчет погрешностей

Уравнение выходного напряжения:

Рассчитаем следующие погрешности:

а) Погрешность от допуска сопротивления шунта

Погрешность допуска сопротивления шунта составляет 0,05% или 15нОм.

Другими словами

R шреал – реальное сопротивление шунта.

U хреал – напряжение на выходе усилителя при R ш = R шреал

б) Погрешность от ТКС резисторов:

Выберем резисторы R1,R2 из серии С2-29В.

У данного типа резисторов

погрешность d 1 от ТКС R 2

погрешность d 2 от ТКС R 1

в) Погрешность от ТКЕ СМ

г) Погрешность от ΔI BX .

д) Погрешностьот коэффициента подавления синфазного сигнала.

Общая погрешность

Это значение удовлетворяет заданной погрешности. Следовательно подтверждается правильность выбора операционного усилителя с малым дрейфом смещения нуля.

8. Заключение.

Данная схема преобразователя напряжения в ток достаточно проста, но в то же время обеспечивает необходимую точность преобразования (погрешность преобразования не более 0,05) . Данные качества позволяют широко использовать эту схему в измерительных системах и системах обработки сигналов.

9. Список используемой литературы:

1. Конспект лекций Пасынкова Ю.А.по схемотехнике за 2001 год.

2. Хоровиц П., Хилл У. ”Искусство схемотехники”

3. Кунов В.М. Операционные усилители. Справочник. Новосибирск, 1992.

11. Технические характеристики элементов.

Обозначение

на схеме

Тип

элемента

Количество

Примечание

Опер. усилитель

U ВЫХ = 10,5 В, ТКЕ СМ = 0,5 мкВ/К

Резисторы

Прецизионные, ТКС =

подстроечный

корректировка нуля

Шунты.

Шунт является простейшим измерительным преобразователем тока в напряжении. Он предназначен для расширения пределов измерения по току. При этом большую часть измеряемого тока пропускают через шунт, а меньшую - через измерительный механизм прибора. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Шунт представляет собой четырёхзажимный резистор. Два входных (силовых) зажима, через которые шунт включается в измеряемую цепь, называются токовыми, а два других, с которых снимается напряжение U, подводимое к измерительному механизму – потенциальными – рис.3.1.

I u И М

Рис. 3.1. Схема включения шунта.

Шунт характеризуется номинальным значением I ном и номинальным значением выходного напряжения U ном . Их отношения определяет номинальное сопротивление шунта:

R ш =U ном /I ном.

В измерительный механизм прибора отбирается часть измеряемого токаI :

I u = I R ш / (R ш + R u)

где R u – сопротивление измерительного механизма. Если необходимо, чтобы ток I u был вn раз меньше тока I , то сопротивление шунта должно быть:

R ш = R u / (n-1)

где n = I /I u - коэффициент шунтирования.

Шунты изготавливаются из манганина, сопротивление которого незначительно меняется от температуры. Шунты могут быть встроенные в прибор (при токах до 30 А) или наружные. Наружные шунты изготавливаются калиброванными, рассчитанными на определённые токи и имеющие одно из стандартных значений выходного напряжения: 10; 15; 30; 50; 75; 100; 150 и 300 мВ. Серийные шунты выпускаются для токов до 5000А. Классы точности серийных шунтов от 0,02 до 0,5.

Для многопредельных магнитоэлектрических приборов

Чувствительность измерительного преобразователя – это отношение изменения выходного сигнала к вызвавшему его изменению входного сигнала. Отношение S=ΔY/ΔX есть средняя чувствительность преобразователя на интервале ΔХ, а предел, к которому стремится это отношение при ΔХ→ 0, есть чувствительность преобразователя в точке Х:



S ═ lim S cp ═ -- .

ΔX→0 dX

Если Y и Х величины однородные, то чувствительность величина безразмерная. Различают абсолютную и относительную чувствительности преобразователя. Абсолютная чувствительность – это S=dY/dX, а относительная – S 0 =(dY/Y)/(dX/X). Например, чувствительность тензо-метрического преобразователя определяется как отношение относительного изменения электрического сопротивления ΔR/R к относительной деформации Δl/l.

Если функция преобразования линейна, то S - соnst и не зависит от Х. Например, если у=ах+ b, то S=а.

Если функция преобразования нелинейна, то S≠S cp и зависит от Х. Например, если у=ах 2 +b, то а=2ах.

Порог реагирования – это минимальное изменение входной величины, вызывающее уверенно различимое приращение выходной величины преобразователя на фоне шумов, смещения нуля, гистерезиса характеристики и прочих мешающих факторов.

Входное и выходное сопротивления определяют степень согласования преобразователя с источником сигнала и с нагрузкой. Так, если преобразуемый сигнал напряжение, то Z вх должно быть максимальным, а если ток – то минимальным. В общем виде входное сопротивление должно быть таким, чтобы минимизировать мощность, потребляемую от источника сигнала.

Быстродействие характеризует способность быстро реагировать на

изменение входного сигнала. В общем виде динамические свойства преобразователя характеризуются дифференциальным уравнением, связывающим выходную и входную величины. Решение этого уравнения при известном х(t) дает значение у(t). Порядок уравнения и его коэффициенты определяются структурой и параметрами преобразователи. На практике такую методику в прямом виде практически не используют в связи со сложностью решения дифференциальных уравнений высоких порядков.

Чаще для описания динамических свойств преобразователей используют характеристические функции, которые можно получить экспериментально, подавая на вход специальный тестовый сигнал, например, скачкообразный или гармонический. Реакция преобразователи на скачкообразное входное воздействие единичной амплитуды называется переходной функцией преобразователя h(t). Очень часто сложный преобразователь при анализе динамических процессов разбивают на простейшие динамические звенья. Переходные функции основных

не зависит от температуры. Температурный коэффициент прибора с дополнительным сопротивлением меньше температурного коэффициента измерительного механизма в R u / (R u + R д) раз.

В многопредельных приборах добавочные резисторы изготавливаются секционными – рис. 3.3.