Регулируемый стабилитрон схема. TL431 – регулируемый стабилитрон

Выпуск интегральной микросхемы начался с далекого 1978 года и продолжается по сегодняшний день. Микросхема дает возможность изготовить различные виды сигнализации и зарядные устройства для повседневного применения. Микросхема tl431 нашла широкое применение в бытовых приборах: мониторах, магнитофонах, планшетах. TL431 - это своего рода программируемый стабилизатор напряжения.

Схема включения и принцип работы

Принцип работы довольно прост. В стабилизаторе есть постоянная величина опорного напряжения , и если подаваемое напряжение меньше этого номинала, то транзистор будет закрыт и не допустит прохождение тока. Это отчетливо можно наблюдать на следующей схеме.

Если же эту величину превысить, регулируемый стабилитрон откроет P-N переход транзистора, и ток потечет дальше к диоду, от плюса к минусу. Выходное напряжение будет постоянным. Соответственно, если ток упадет ниже величины опорного напряжения, управляемый операционный усилитель закроется.

Цоколевка и технические параметры

Операционный усилитель выпускается в разных корпусах. Изначально это был корпус ТО-92, но со временем его сменил более новый вариант SOT-23. Ниже изображена распиновка и виды корпусов начиная с самого «древнего» и заканчивая обновлённой версией.

На рисунке можно наблюдать, что у tl431 цоколевка изменяется в зависимости от типа корпуса. У tl431 имеются отечественные аналоги КР142ЕН19А, КР142ЕН19А. Существуют и зарубежные аналоги tl431: KA431AZ, KIA431, LM431BCM, AS431, 3s1265r, которые ничем не уступают отечественному варианту.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется - 2%.
  • Буква А в маркировке свидетельствует о - 1% точности.
  • Буква В говорит о - 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром . Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока - 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

На базе операционного усилителя тока tl431 можно создать простой стабилизатор. Для создания нужной величины U этого понадобятся три резистора. Необходимо высчитать номинал запрограммированного напряжения стабилизатора. Расчет можно произвести при помощи формулы: Uвых=Vref(1 + R1/R2). Согласно формуле U на выходе зависит от величины R1 и R2. Чем больше сопротивление R1 и R2, тем ниже напряжение выходного каскада. Получив номинал R2, величину R1 можно высчитать следующим образом: R1=R2(Uвых/Vref – 1). Регулируемый стабилизатор возможно включить тремя способами.

Необходимо учесть немаловажный нюанс: сопротивление R3 можно рассчитать по той формуле, по которой рассчитывался номинал R2 и R2. В выходной каскад не стоит устанавливать полярный или неполярный электролит, во избежание помех на выходе.

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения - следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

Необходимо обратить особое внимание на транзистор az431 . Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице.

Именно этот транзистор плавно уменьшает напряжение и силу тока. Вольт-амперные характеристики этого элемента хорошо подходят для решения поставленной задачи.

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

TL 431 это программируемый шунтирующий регулятор напряжения. Хотя, эта интегральная схема начала выпускаться в конце 70-х она до сих пор не сдаёт своих позиций на рынке и пользуется популярностью среди радиолюбителей и крупных производителей электротехнического оборудования. На плате этого программируемого стабилизатора находится фоторезистор, датчик измерения сопротивления и терморезистор. TL 431 повсеместно используются в самых разных электрических приборах бытовой и производственной техники. Чаще всего этот интегральный стабилитрон можно встретить в блоках питания компьютеров, телевизоров, принтеров и зарядок для литий-ионных аккумуляторов телефонов.

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи . При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания . Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока . В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн , они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Интегральный стабилизатор TL431 применяется в основном в блоках питания. Однако, для него можно найти еще немало применений. Некоторые из таких схем приведены в этой статье.

В этой статье будет рассказано о простых и полезных устройствах, выполненных с применением микросхемы TL431 . Но в данном случае не надо пугаться слова «микросхема», у нее всего три вывода, и внешне она похожа на простой маломощный транзистор в корпусе TO90.

Сначала немного истории

Уж так повелось, что всем электронщикам известны магические числа 431, 494. Что это такое?

Компания TEXAS INSTRUMENTS стояла у самых истоков полупроводниковой эры. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP-10. Первая интегральная микросхема была создана еще в 1958 году сотрудником этой компании Джеком Килби.

Сейчас компания TI выпускает широкий ассортимент микросхем, название которых начинается с префиксов TL и SN. Это соответственно аналоговые и логические (цифровые) микросхемы, которые навсегда вошли в историю компании TI и до сих пор находят широчайшее применение.

В числе самых первых в списке «магических» микросхем следует, наверно, считать . В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном (диод Зенера).

Но за счет подобного усложнения микросхема обладает более высокой термостабильностью и повышенной крутизной характеристики. Главная же ее особенность в том, что при помощи напряжение стабилизации можно изменять в пределах 2,5…30 В. У последних моделей нижний порог составляет 1,25 В.

TL431 была создана сотрудником компании TI Барни Холландом в начале семидесятых годов. Тогда он занимался копированием микросхемы стабилизатора другой компании. У нас бы сказали сдирания, а не копирования. Так вот Барни Холланд позаимствовал из оригинальной микросхемы источник опорного напряжения, а уже на его основе создал отдельную микросхему-стабилизатор. Сначала она называлась TL430, а после некоторых усовершенствований получила название TL431.

С тех пор прошло немало времени, а нет сейчас ни одного компьютерного блока питания, где бы она не нашла применения. Она также находит применение практически во всех маломощных импульсных источниках питания. Один из таких источников теперь есть в каждом доме, - это для сотовых телефонов. Такому долгожительству можно только позавидовать. На рисунке 1 показана функциональная схема TL431.

Рисунок 1. Функциональная схема TL431.

Также Барни Холландом была создана не менее известная и до сих пор востребованная микросхема TL494. Это двухтактный ШИМ - контроллер, на базе которого было создано множество моделей импульсных источников питания. Поэтому число 494 также по праву относится к «магическим».

А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL431.

Индикаторы и сигнализаторы

Микросхема TL431 может применяться не только по своему прямому назначению как стабилитрон в блоках питания. На ее основе возможно создание различных световых индикаторов и даже звуковых сигнализаторов. С помощью подобных устройств можно отслеживать много различных параметров.

В первую очередь это просто электрическое напряжение. Если же какую либо физическую величину с помощью датчиков представить в виде напряжения, то можно сделать устройство, контролирующее, например, уровень воды в емкости, температуру и влажность, освещенность или давление жидкости или газа.

Работа такого сигнализатора основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 2,5 В стабилитрон закрыт, через него протекает лишь небольшой ток, как правило, не более 0,3…0,4 мА. Но этого тока достаточно для очень слабого свечения светодиода HL1. Чтобы этого явления не наблюдалось, достаточно параллельно светодиоду подключить резистор сопротивлением примерно 2…3 КОм. Схема сигнализатора превышения напряжения показана на рисунке 2.

Рисунок 2. Сигнализатор превышения напряжения.

Если же напряжение на управляющем электроде превысит 2,5 В, стабилитрон откроется и засветится светодиод HL1. необходимое ограничение тока через стабилитрон DA1 и светодиод HL1 обеспечивает резистор R3. Максимальный ток стабилитрона составляет 100 мА, в то время как тот же параметр у светодиода HL1 всего 20 мА. Именно из этого условия и рассчитывается сопротивление резистора R3. более точно это сопротивление можно рассчитать по нижеприведенной формуле.

R3 = (Uпит - Uhl - Uda)/Ihl. Здесь использованы следующие обозначения: Uпит - напряжение питания, Uhl - прямое падение напряжения на светодиоде, Uda напряжение на открытой микросхеме (обычно 2В), Ihl ток светодиода (задается в пределах 5…15 мА). Также не следует забывать о том, что максимальное напряжение для стабилитрона TL431 всего 36 В. Этот параметр также превышать нельзя.

Уровень срабатывания сигнализатора

Напряжение на управляющем электроде, при котором загорается светодиод HL1 (Uз) задается делителем R1, R2. параметры делителя рассчитываются по формуле:

R2 = 2,5*R1/(Uз - 2,5). Для более точной настройки порога срабатывания можно вместо резистора R2 установить подстроечный, номиналом раза в полтора больше, чем получилось по расчету. После того, как настойка произведена, его можно заменить постоянным резистором, сопротивление которого равно сопротивлению введенной части подстроечного.

Иногда требуется контролировать несколько уровней напряжения. В этом случае потребуются три таких сигнализатора, каждый из которых настроен на свое напряжение. Таким образом возможно создание целой линейки индикаторов, линейной шкалы.

Для питания цепи индикации, состоящей из светодиода HL1 и резистора R3, можно применить отдельный источник питания, даже нестабилизированный. В этом случае контролируемое напряжение подается на верхний по схеме вывод резистора R1, который следует отключить от резистора R3. При таком включении контролируемое напряжение может находиться в пределах от трех, до нескольких десятков вольт.

Рисунок 3. Индикатор пониженного напряжения.

Отличие этой схемы от предыдущей в том, что светодиод включен по-другому. Такое включение называется инверсным, поскольку светодиод зажигается в том случае, когда микросхема закрыта. В случае, если контролируемое напряжение превышает порог установленный делителем R1, R2 микросхема открыта, и ток протекает через резистор R3 и выводы 3 - 2 (катод - анод) микросхемы.

На микросхеме в этом случае присутствует падение напряжения 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлены два диода. Некоторые типы светодиодов, например синие, белые и некоторые типы зеленых, зажигаются, когда напряжение на них превышает 2,2 В. В этом случае вместо диодов VD1, VD2 устанавливаются перемычки из проволоки.

Когда контролируемое напряжение станет меньше установленного делителем R1, R2 микросхема закроется, напряжение на ее выходе будет намного больше 2 В, поэтому светодиод HL1 зажжется.

Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рисунке 4.

Рисунок 4. Индикатор изменения напряжения.

В этом индикаторе применен двухцветный светодиод HL1. Если контролируемое напряжение превышает пороговое значение, светится красный светодиод, а если напряжение понижено, то горит зеленый.

В случае, когда напряжение находится вблизи заданного порога (примерно 0,05…0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет вполне определенную крутизну.

Если требуется следить за изменением какой-либо физической величины, то резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рисунке 5.

Рисунок 5. Схема контроля параметров окружающей среды.

Условно на одной схеме показано сразу несколько датчиков. Если это будет , то получится . Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит.

По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.

Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.

Эту же схему можно применить в качестве , например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.

Порог срабатывания устройства во всех случаях устанавливается с помощью переменного резистора R1.

Кроме перечисленных световых индикаторах на микросхеме TL431 возможно собрать и звуковой индикатор. Схема такого индикатора показана на рисунке 6.

Рисунок 6. Звуковой индикатор уровня жидкости.

Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.

Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал.

В качестве излучателя можно применить излучатель ЗП-3. питание устройства от напряжения 5…12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной.

Основная область применения микросхемы TL434, конечно же блоки питания. Но, как видим, только этим возможности микросхемы не ограничиваются.

Борис Аладышкин

Микросхема TL431 — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.

Технические характеристики TL431

  • напряжение на выходе: 2,5…36 вольт;
  • выходное сопротивление: 0,2 Ом;
  • прямой ток: 1…100 мА;
  • погрешность: 0,5%, 1%, 2%;

TL431 имеет три вывода: катод, анод, вход.

Аналоги TL431

Отечественными аналогами TL431 являются:

  • КР142ЕН19А
  • К1156ЕР5Т

К зарубежным аналогам можно отнести:

  • KA431AZ
  • KIA431
  • HA17431VP
  • IR9431N
  • AME431BxxxxBZ
  • AS431A1D
  • LM431BCM

Схемы включения TL431

Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.

Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.

Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.

Индикатор повышения напряжения

Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:

R3 = (Uпит. – Uh1 – Uda)/Ih1

где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В.

Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:

R2 = 2,5 х Rl/(Uз — 2,5)

Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный.

Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение.

Проверка исправности TL431

Выше приведенной схемой можно проверить TL431, заменив R1 и R2 одним переменным резистором на 100 кОм. В случае, если вращая движок переменного резистора светодиод засветиться, то TL431 исправен.

Индикатор низкого напряжения

Разница данной схемы от предшествующей в том, что светодиод подключен по иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта.

Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.

Индикатор изменения напряжения

Если необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом:

В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом. Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога (0,05…0,1В).

Работа TL431 совместно с датчиками

Если необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия.

Пример такого модуля приведен ниже. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить , то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.

Вследствие этого напряжение на управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод не горит. При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL431. При превышении порога срабатывания (2,5В) HL1 загорается.

Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL431, светодиод загорается.

Если же в качестве датчика применить терморезистор, то можно сделать из данной схемы термостат. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.

TL431 в схеме со звуковой индикацией

Помимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.

Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм.

Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал.

Калькулятор для TL431

Для облегчения расчетов можно воспользоваться калькулятором:


(103,4 Kb, скачано: 21 594)
(702,6 Kb, скачано: 14 619)

Сразу оговорюсь, что данная статья не панацея. У кого-то это может не пройти.

Для начала я расскажу о TL431, и для чего она служит. TL431 это управляемый стабилитрон с помощью которого можно получить стабилизированное напряжения в широких пределах от 2,5 вольта до 36 вольт. Применяя эту микросхему можно сделать источник опорного напряжения для блоков питания, а также для различных измерительных схем.

Рисунок взят из даташита компании ON Semiconductor

Ниже приведены два варианта даташит для этой микросхемы

  1. Даташит компании ON Semiconductor https://www.onsemi.com/pub/Collateral/TL431-D.PDF
  2. Даташит компании Texas Instruments http://www.ti.com/lit/ds/symlink/tl431.pdf

Цоколевка этой микросхемы наилучшим образом отображена в даташите компании ON Semiconductor

В даташите Texas Instruments обнаружена одна небольшая деталь

На всех рисунках есть одна надпись «top view» это переводится как «вид сверху» при невнимательном просмотре даташит, не зная, что это может обозначать, можно неправильно распаять на плате.

В одной из своих схем я применил микросхему TL431, и она оказалась неисправной. Поискав по форумам я нашел способ проверки этой микросхемы. А в некоторых местах я видел как вызванивают эту микросхему с помощью мультиметра но, увы, все это не то. Я тоже сначала попытался проверить мультиметром но сразу отложил в сторону это мероприятие. И решил попробовать проверить с помощью универсального тестера компонентов , который был ранее приобретен на алиэкспресс.

Во время проверки составил таблицу. Сначала проверил в режиме двухполюсника (если в таблице указаны два вывода, просто необходимо объединить оба вывода вместе).

Результаты измерения первого экземпляра

анод, катод

Измерение 1 – REF; 2 - катод.

Измерение 1 – анод; 2 - катод.

Измерение 1 - REF, катод; 2 – анод.

Измерение 1 – REF; 2 – катод, анод.

Измерение 1 – REF, 2 – анод, 3 – катод.

Результаты измерения второго экземпляра.

анод, катод

Небольшая разница присутствует. Глядя на таблицу замечаешь определенную закономерность. Например, в 4 строке это фактически режим работы TL431 для получения 2,5 вольта. Но самое интересное режим измерения в режиме трехполюсника. В одном случае определяется как транзистор, а во втором случае как отсутствует деталь. Самое интересное в случае когда транзистор определяется: определятся транзистор структуры NPN, вывод REF определятся как эмиттер, анод как база, а катод как коллектор. Между REF и катодом диод катод, которого направлен в сторону катода.

На основании этих данных уже можно судить исправлена микросхема или нет, а также определить цоколевку.