Самовосстанавливающиеся предохранители компании Littelfuse. Самовосстанавливающиеся предохранители

Самовосстанавливающийся предохранитель широко используется в электронике для защиты электронной аппаратуры. Полимерный компонент резко увеличивает сопротивлением при превышении порогового значения протекающего через него тока. После уменьшения напряжения через заданный интервал времени предохранитель уменьшает свое сопротивление, поэтому его назвали самовосстанавливающимся. Самовосстанавливающиеся предохранители широко используются для защиты коммуникационных портов и интерфейсов. Ведущим производителем компонентов является компания Bourns.

Интернет-магазин Платан предлагает Устройства защиты, предохранители и самовосстанавливающиеся предохранители различных производителей по конкурентной цене. Для выбора компонента используйте поиск по параметрам, техническую документацию и описание. Доставка товара осуществляется различными транспортными компаниями или самовывозом из офисов в Москве и Санкт-Петербурге, предлагаем любые виды оплаты.

Самовосстанавливающийся предохранитель иными словами можно назвать предохранителем многоразового использования . Предохранитель являет собой полимерный резистор, имеющий положительный температурный коэффициент сопротивления. Используется для защиты от перегрузки цепей по току или одновременной защиты по напряжению и току в пределах от 3А до 100А и от 6В до 250В .

Самовосстанавливающиеся предохранители отличаются от традиционных конструкций отсутствием плавкой вставки и возможностью самовосстановления проводящих способностей после срабатывания и завершения воздействия побудителя.

Способность автоматического восстановления предохранителей сокращает время и расходы на обслуживание, ремонт электроустановки.

Возрастание проходящего тока или температуры окружающей среды, превышающих номинальные значения, приводят к увеличению сопротивления предохранителя в пределах от 0,0026Ом до 60Ом , плавлению кристаллических токопроводящих частиц и размыканию цепи впоследствии. Скорость срабатывания зависит от конкретной серии и длится в пределах от 0,15 с до 40,00 с .

После сброса цепи температура предохранителя понижается, восстанавливая первоначальные характеристики. Происходит самовосстановление. Следует отметить, что число срабатываний ограниченно . После каждого срабатывания характеристики ухудшаются.

Выбор соответствующего предохранителя необходимо осуществлять, обращая внимание на следующие характеристики: тип предохранителя (с радиальными, аксиальными выводами или для поверхностного монтажа в SMD исполнении), максимальный не приводящий к срабатыванию ток (рекомендуется выбирать со значением, превышающим ток цепи), максимальное рабочее напряжение и температура рабочей среды, влияющая на ток срабатывания.

Применяются представленные предохранители в компьютерном, телекоммуникационном и кроссовом оборудовании, медицинской измерительной аппаратуре, аккумуляторных батареях, автомобильном и другом электрооборудовании.

Детальные характеристики и основные параметры самовосстанавливающихся предохранителей значатся в таблицах. Расшифровка маркировки, зависимость тока, не приводящего к срабатыванию, от температуры окружающей среды, размеры, рекомендации монтажа и пайки приведены ниже.

Гарантия работы поставляемых нашим предприятием самовосстанавливающихся предохранителей составляет 2 года. Это подкрепляется надлежащими документами по качеству.

Окончательная цена на самовосстанавливающийся предохранитель зависит от количества, сроков поставки, производителя, страны происхождения и формы оплаты.

В комментариях к моей прошлой статье меня неоднократно корили за то, что не упомянул способ защиты с использованием самовосстанавливающегося предохранителя. Чтобы исправить эту несправедливость поначалу хотел просто добавить в статью дополнительную схему защиты и короткое к ней пояснение. Однако решил, что тема самовосстанавливающихся предохранителей заслуживает отдельной публикации. Дело в том, что устоявшееся их название не слишком отражает суть вещей, а копаться в даташитах и разбираться в принципе работы при применении таких “элементарных” компонентов, как предохранитель, часто начинают уже после того, как начала глючить первая партия плат. Хорошо если не серийная. Итак, под катом вас ждёт попытка разобраться, что же это за зверь такой PolySwitch , оригинальное название, кстати, лучше отражает суть прибора, и понять с чем его едят, как и в каких случаях имеет смысл его использовать.

Физика тёплого тела.

PolySwitch , это PPTC (Polymeric Positive Temperature Coefficient) прибор, который имеет положительный температурный коэффициент сопротивления. По правде, гораздо больше общих черт он имеет с позистором, или биметаллическим термопредохранителем, чем с плавким, с которым его обычно ассоциируют не в последнюю очередь благодаря усилиям маркетологов.
Вся хитрость заключается в материале из которого наш предохранитель изготовлен - он представляет собой матрицу из не проводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек.

Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце-концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После остывания прибора происходит процесс кристаллизации и предохранитель снова становится превосходным проводником.
Как выглядит температурная зависимость сопротивления видно из следующего рисунка

На кривой отмечено несколько характерных для работы прибора точек. Наш предохранитель является отличным проводником пока температура находится в рабочем диапазоне Point1 < T

Идеальный сферический конь в вакууме.

Пора переходить от теории к практике. Соберём простую схему защиты нашего ценного устройства, настолько простую, что изображённая по ГОСТу она выглядела бы просто неприлично.

Что же будет происходить, если в цепи вдруг возникнет недопустимый ток, превышающий ток срабатывания? Сопротивление материала из которого прибор изготовлен начнёт возрастать. Это приведёт к увеличению падения напряжения на нём, а значит и рассеиваемой мощности равной U*I. В результате температура растёт, это снова приводит к… В общем начинается лавинообразный процесс нагрева прибора с одновременным увеличением сопротивления. В результате проводимость прибора падает на порядки и это приводит к желаемому уменьшению тока в цепи.
После того как прибор остывает его сопротивление восстанавливается. Через некоторое время, в отличие от предохранителя с плавкой вставкой, наш Идеальный Предохранитель снова готов к работе!
Идеальный ли? Давайте вооружившись нашими скромными познаниями в физике прибора попробуем разобраться в этом.

Гладко было на бумаге, да забыли про овраги.

Пожалуй, главная проблема заключается во времени. Время вообще такая субстанция, которую очень трудно победить, хотя многим очень хотелось… Но не будем о политике - ближе к нашим полимерам. Как вы наверное уже догадались, я веду к тому, что изменение кристаллической структуры вещества гораздо более длительный процесс чем перестройка дырок с электронами, например в туннельном диоде. Кроме этого, для того чтобы разогреть прибор до нужной температуры, требуется некоторое время. В результате, когда ток через предохранитель вдруг превысит пороговое значение, его ограничение происходит совсем не мгновенно. При токах, близких к пороговому, этот процесс может занять несколько секунд, при токах близких к максимально допустимому для прибора, доли секунды. В результате за время срабатывания такой защиты сложное электронное устройство успеет выйти из строя, возможно, не один десяток раз. В подтверждение привожу типичный график зависимости времени срабатывания (по вертикали) от вызвавшего это срабатывание тока (по горизонтали) для гипотетического PTVC прибора.

Обратите внимание, что на графике приведены для сравнения две зависимости, снятые при разных температурах окружающей среды. Надеюсь вы ещё помните, что первопричиной перестройки кристаллической структуры служит температура материала, а не протекающий через него ток. Это значит, что при прочих равных, для того чтобы разогреть прибор до состояния метаморфозы от более низкой температуры необходимо затратить больше энергии чем от более высокой, а значит, и процесс этот в первом случае займёт больше времени. Как следствие, получаем зависимость таких важнейших параметров прибора, как максимальный гарантированный ток нормальной работы и гарантированный ток срабатывания от температуры окружающей среды.

Прежде чем привести график уместно упомянуть об о основных технических характеристиках данного класса приборов.

  • Максимальное рабочее напряжение Vmax - это максимально допустимое напряжение, которое может выдерживать прибор без разрушения при номинальном токе.
  • Максимально допустимый ток Imax - это максимальный ток, который прибор может выдержать без разрушения.
  • Номинальный рабочий ток Ihold - это максимальный ток, который прибор может проводить без срабатывания, т.е. без размыкания цепи нагрузки.
  • Минимальный ток срабатывания Itrip - это минимальный ток через прибор, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.
  • Первоначальное сопротивление Rmin, Rmax - это сопротивление прибора до первого срабатывания (при получении от изготовителя).

В нижней части графика находится рабочая область прибора. Что произойдёт в средней части зависит, судя по всему, от взаимного расположения звёзд на небе, ну а побывав в верхней части графика прибор отправится в путешествие (trip), которое вызовет метаморфозы его кристаллической структуры и как следствие срабатывание защиты. Ниже приведена таблица с данными реальных приборов. Разница в токе срабатывания в зависимости от температуры впечатляет!

Таким образом, в устройствах предназначенных для работы в широком температурном диапазоне применять PPTC следует с осторожностью. Если вы считаете, что проблемы у нашего кандидата на звание Идеального Предохранителя закончились, то заблуждаетесь. Есть у него ещё одна слабость, присущая людям. После стрессового состояния, вызванного чрезмерным перегревом, ему необходимо придти в норму. Однако физика горячего тела очень похожа на физику мягкого. Как и человек после инсульта, прежним наш предохранитель уже не станет никогда! Для убедительности приведу очередной график, процесса реабилитации после стресса, вызванного превышением протекающего тока, который, меткие на слово англичане, обозвали Trip Event. и как они не боятся нашего роспотребнадзора?

Из графика видно, что процесс восстановления может длиться сутками, но полным не бывает никогда. С каждым случаем срабатывания защиты нормальное сопротивление нашего прибора становится всё выше и выше. После нескольких десятков циклов прибор вообще теряет способность выполнять возложенные на него функции должным образом. Поэтому не стоит использовать их в случаях когда перегрузки возможны с высокой периодичностью.
Пожалуй на этом стоило бы и закончить, и наконец приступить к обсуждению областей применения и схемотехнических решений, но стоит обсудить ещё некоторое нюансы, для чего посмотрим на основные характеристики широко распространённых серий нашего героя дня.

При выборе элемента, который вы будете использовать в проекте обратите внимание на максимально допустимый рабочий ток. Если высока вероятность его превышения, то стоит обратиться к альтернативному виду защиты, либо ограничить его с помощью другого прибора. Ну например проволочного резистора.
Ещё один очень важный параметр - максимальное рабочее напряжение. Понятно, что когда прибор находится в нормальном режиме напряжение на его контактах очень мало, но вот после перехода в режим защиты оно может резко возрасти. В недалёком прошлом этот параметр был очень мал и ограничивался десятками вольт, что не давало возможности использовать такие предохранители в высоковольтных цепях, скажем для защиты сетевых блоков питания.
В последнее время ситуация улучшилась и появились серии, рассчитанные на достаточно высокое напряжение, но обратите внимание, что они имеют весьма небольшие рабочие токи.

Скрестим ужа и трепетную лань.

Судя по тому, какое разнообразие устройств PolySwitch предлагает рынок, использовать их в разрабатываемых вами устройствах можно, а в отдельных случаях даже нужно, но к выбору конкретного прибора и способа его использования следует подходить с большой тщательностью.
Кстати, что касается схемотехники, прямая замена плавких предохранителей на PolySwitch хорошо проходит только в простейших случаях.
Например: для встраивания в батарейные отсеки, или для защиты оборудования (электродвигатели, активаторы, монтажные блоки) и электропроводки в автомобильных приложениях. Т.е. устройств, которые не выходят из строя мгновенно при перегрузке. Специально для этого имеется широкий класс исполнения данных устройств в виде перемычек с аксиальными выводами и даже дисков для аккумуляторов.

В большинстве же случаев PolySwitch стоит комбинировать с более быстродействующими устройствами защиты. Такой подход позволяет компенсировать многие из их недостатков, и в результате их с успехом применяют для защиты периферийных устройств компьютеров. В телекоммуникации, для защиты АТС, кроссов, сетевого оборудования от всплесков тока, вызванных попаданием линейного напряжения и молниями. А так же при работе с трансформаторами, сигнализациями, громкоговорителями, контрольно-измерительным оборудованием, спутниковым телевидением и во многих других случаях.

Вот простенький пример защиты USB порта.

В качестве комплексного подхода рассмотрим гипотетическую схему комплексно решающую задачу построения сверхзащищённого светодиодного драйвера с питанием от сети переменного напряжения 220В.

В первой ступени самовосстанавливающийся предохранитель применён в связке с проволочным резистором и варистором. Варистор защищает от резких бросков напряжения, а резистор ограничивает протекающий в цепи ток. Без этого резистора в момент включения импульсного источника питания в сеть через предохранитель может течь недопустимо большой импульс тока, обусловленный зарядом входных ёмкостей. Вторая ступень защиты предохраняет от неправильного переключения полярности, или ошибочном подключении источника питания со слишком большим напряжением. При этом, в момент аварийной ситуации, бросок тока принимает на себя защитный TVS диод, а PolySwitch ограничивает протекающую через него мощность, предотвращая тепловой пробой. Кстати, эта связка настолько напрашивается в ходе разработки схемотехники и так широко распространена, что породила отдельный класс приборов - PolyZen. Весьма удачный гибрид ужа и трепетной лани.

Ну, и на выходе наш самовосстанавливающийся предохранитель служит для предотвращения короткого замыкания, а так же на случай выхода из рабочего режима светодиодов, или их драйвера в результате перегрева, либо неисправности.
В схеме также присутствуют элементы защиты от статики, но это уже не тема данной статьи…

Предупреждён - значит вооружён.

На прощание давайте кратко подведём итоги:
  • Polyswitch это не плавкий предохранитель.
  • Применяя Polyswitch необходимо заботиться о том, чтобы ток который через него проходит даже в случае внештатной ситуации не превышал допустимый. Необходимо применение ограничителей тока. В отдельных случаях ограничителем могут служить такие элементы как соединительные провода (электропроводка автомобиля) или внутреннее сопротивление батарей/аккумуляторов. В таких случаях возможна простейшая схема включения в разрыва цепи.
  • Polyswitch весьма инерционный прибор, он не годится для защиты схем чувствительных к коротким броскам тока. В этих случаях его необходимо применять совместно с другими элементами защиты - стабилитронами, супрессорами, варисторами, разрядниками и т. п., что не освобождает вас от необходимости принятия мер, ограничивающих максимальный ток в цепи.
  • Применяя Polyswitch следует следить чтобы напряжение на нём не превышало допустимого. Высокое напряжение может появиться после срабатывания прибора, когда его сопротивление увеличивается.
  • Следует помнить, что количество срабатываний прибора ограниченно. После каждого срабатывания его характеристики ухудшаются. Он не подходит для защиты цепей в которых перегрузки являются обыденным делом.
  • Ну и наконец, не забывайте что ток срабатывания этого прибора существенным образом зависит от температуры окружающей среды. Чем она выше, тем он меньше. Если ваше устройство рассчитано на эксплуатацию в расширенном температурном диапазоне или периодически работает в зоне повышенных температур (мощный блок питания или усилитель НЧ), это может привести к ложным срабатыванием.

P.S

Специально для того, чтобы в очередной раз не оскорблять чувства пользователя

В. Охрименко

В статье рассматриваются характеристики самовосстанавливающихся предохранителей компании Littelfuse.

Введение

Традиционный способ защиты от перегрузки по току - применение плавких или самовосстанавливающихся предохранителей.

Компания Littelfuse - ведущий производитель пассивных электронных компонентов для "защиты" разного рода электротехнических устройств. Одно из важных направлений - производство предохранителей, основное назначение которых - защита от избыточного тока при возникновении аварийных ситуаций в системе. Кроме классических плавких предохранителей компания в настоящее время выпускает и т.н. самовосстанавливающиеся предохранители (polymeric positive temperature coefficient devices) [ - ].

Самовосстанавливающиеся предохранители - по сути, полимерные терморезисторы с положительным температурным коэффициентом (Positive Temperature Coefficient - PTC). В некоторых приложениях полимерные PTC-предохранители (в дальнейшем полимерные предохранители) можно с успехом использо- вать для замены стандартных плавких предохранителей (fuse).

И плавкие и полимерные предохранители предназначены для защиты устройств от перегрузок по току при возникновении аварийных режимов в системе, предохранения оборудования и людей от возникновения пожара и возможного риска поражения электрическим током, а также для изолирования дефектных блоков и узлов от основной системы еще до момента возникновения более неблагоприятных последствий.

Однако эти типы предохранителей базируется на разной технологии изготовления, и соответственно обладают разными уникальными характеристиками, преимуществами и недостатками. Понимание особенностей технологий и принципа действия поможет сделать правильный выбор предохранителя для конкретного приложения с учетом всех его многочисленных параметров. Пожалуй, основное их отличие заключается в том, что полимерные предохранители восстанавливают свои характеристики (за исключением экстремальных случаев) после прекращения действия перегрузки, т.е. после снижения уровня протекающего тока. Однако восстановление характеристик происходит не полностью, что, конечно, следует учитывать при их применении в конкретном приложении. Традиционные плавкие предохранители для возобновления работоспособности системы подлежат обязательной замене после перегорания.

Поскольку полимерные предохранители восстанавливаются автоматически, их применение оправдывается в тех цепях, в которых перегрузки по току случается довольно часто, а также, если доступ к месту их установки затруднен. В таких случаях сокращаются расходы на гарантийное и сервисное обслуживание. Однако для окончательного выбора типа предохранителя необходимо учитывать все эксплуатационные характеристики устройства.

И полимерные и традиционные плавкие предохранители реагируют, по сути, на тепло, выделяемое при протекании тока. В плавком предохранителе происходит расплавление плавкой вставки (т.е. обрыв цепи) и, в конечном счете, его разрушение. Самовосстанавливающийся только ограничивает ток в цепи вследствие существенного увеличение величины его сопротивления, что также происходит в процессе его нагревания.

Упрощенное устройство полимерного предохранителя и принцип его действия следующий. Полимерный предохранитель представляет собой компаунд, состоящий из непроводящего полимерного материала (как правило, полиэтилена) и проводящих фракций графита. Благодаря наличию графитовых каналов в нормальном состоянии полимерный предохранитель является проводником со сравнительно низким собственным сопротивлением. При разогреве выше определенной температуры (т.н. температуры перехода) молекулы полимера получают дополнительную энергию, и изначальная кристаллическая структура трансформируется в аморфную, вследствие этого разрушаются графитовые каналы, что приводит к резкому изменению проводимости и соответственно к повышению сопротивления предохранителя. При снижении температуры полимер кристаллизуется, графитовые каналы восстанавливаются, что приводит к возврату проводящих свойств предохранителя.

Характеристика переключения приведена на Рис. 1. Однако недостаток в том, что величина сопротивления после восстановления всегда больше первоначальной. Число переходов от проводящего состояния к непроводящему и обратно практически неограниченно, т.е. при отсутствии катастрофических факторов срок службы полимерного предохранителя не ограничен.

В статье рассматриваются характеристики и особенности полимерных предохранителей (Polyfuse, Resettable PTC), выпускаемых компанией Littelfuse.

Характеристики

Сопротивление полимерных предохранителей как минимум в два раза больше в сравнении с плавкими.

В отличие от плавких предохранителей полимерные не обеспечивают полного разрыва цепи. Поэтому в "отключенном" состоянии (т.е. в состоянии высокого сопротивления) полимерные предохранители характеризуются током утечки. Величина тока утечки может достигать нескольких сотен миллиампер. Плавкие предохранители при срабатывании полностью разрывают цепь протекание тока.

При выборе полимерного предохранителя следует принимать во внимание изменение параметров в рабочем диапазоне температур, габаритные размеры, а также соответствие стандартам. Для некоторых типов полимерных предохранителей в Табл. 1 приведены зависимости номинального тока срабатывания предохранителей от температуры.

Таблица 1. Зависимость номинального тока от температуры для
некоторых типов полимерных предохранителей Littelfuse.
Тип Температура окружающей среды, °С
-40 - 20 0 23 40 50 60 70 85
Номинальный ток (I hold), А
250R120T 0.18 0.16 0.14 0.12 0.10 0.09 0.08 0.06 0.05
250S130 0.21 0.19 0.17 0.13 0.11 0.10 0.09 0.07 0.05
16R110B 1.60 1.43 1.27 1.10 1.00 0.92 0.75 0.67 0.57
1812L200-C 3.08 2.71 2.35 2.00 1.80 1.60 1.50 1.07 0.80
0805L100 1.35 1.25 1.10 1.00 0.82 0.74 0.65 0.55 0.42
0603L025 0.32 0.29 0.27 0.25 0.21 0.18 0.16 0.14 0.10

Скорость реакции полимерных предохранителей хуже, чем у плавких. Времятоковая характеристика полимерных предохранителей во многом аналогична той, которую имеют плавкие предохранители типа Littelfuse Slo-Blo. Времятоковая характеристика отключения - зависимость времени "перегорания" от протекающего тока. Это, по сути, время отключения как функция тока. На Рис. 2 приведен график зависимости времени срабатывания от величины протекающего тока для полимерных предохранителей серии 0805L.

Максимально допустимый ток через полимерный предохранитель 10-100 А, тогда как у некоторых типов плавких максимальный ток может достигать величины 10 тыс. ампер.

Определения некоторых основных электрических характеристик полимерных предохранителей во многом соответствуют тем, которые используются для плавких [ - ]. Вместе с тем, в связи с особенностями технологии в документации, предоставляемой компанией Littelfuse, в качестве основных приводятся следующие электрические характеристики полимерных предохранителей.

Ток удержания I hold (hold current). По сути, номинальный ток предохранителя. Ток удержания - максимальный ток, который может протекать через предохранитель, и который не приводит к переходу в непроводящее состояние при заданной температуре окружающего воздуха (как правило, - это 20 или 23 °C).

Ток срабатывания I trip (trip current) - минимальный ток, при котором полимерный предохранитель переходит в непроводящее состояние при заданной температуре окружающего воздуха.

Максимальный ток I max (maximum fault current) - максимальный ток, который предохранитель может выдержать без повреждения при напряжении V max .

Максимальное напряжение V max (maximum voltage device) - максимальное напряжение, которое может выдержать предохранитель без повреждения при протекании максимального тока I max . Следует учитывать не только номинальное значение рабочего напряжения, но и возможность возникновения разного рода импульсных помех (например, в системе электропитания автомобилей). Полимерные предохранители общего применения компании Littelfuse предназначены для работы при напряжении до 60 В. Для сравнения плавкие предохранители рассчитаны на напряжение 1000 В и более.

Мощность рассеивания P dmax (power dissipated) - мощность, рассеиваемая предохранителем при переходе в непроводящее состояние при заданной температуре окружающего воздуха (обычно 20 или 23 °C).

Минимальное сопротивление R min (minimum resistance of device in initial state). Минимальное начальное сопротивление предохранителя в проводящем состоянии до монтажа на плату, по сути, до его пайки.

Типовое сопротивление R typ (typical resistance of device in initial state). Типовое сопротивление предохранителя в проводящем состоянии до монтажа на плату.

Максимальное сопротивление после восстановления R 1max (maximum resistance) - максимальное сопротивление при заданной температуре, измеренное по истечению одного часа после восстановления или через 20 с после пайки при температуре 260 °C.

Таблица 2. Параметры SMD-предохранителей серии 0805L.
Тип I hold , А I trip , А V max ,
В
I max ,
А
P dmax ,
Вт
Время
срабатывания
Сопротивление, Ом
Ток, А Время, с R min R typ R 1max
0805L010 0.10 0.30 15 100 0.5 0.50 1.50 1.0 3.5 6.0
0805L020 0.20 0.50 9 8.00 0.02 0.65 2.0 3.5
0805L035 0.35 0.75 6 0.10 0.25 0.75 1.2
0805L050 0.50 1.00 0.15 0.5 0.85
0805L075 0.75 1.50 40 0.6 0.20 0.09 0.35
0805L100 1.0 1.95 0.30 0.06 0.21

В Табл. 2 приведены параметры полимерных предохранителей серии 0805L, в Табл. 3 - параметры предохранителей серии 30R.

Таблица 3. Параметры предохранителей серии 30R.
Тип I hold , А I trip , А V max ,
В
I max ,
А
P dmax ,
Вт
Время срабатывания Сопротивление, Ом
Ток, А Время, с R min R 1max
30R090 0.90 1.80 30 40 0.6 4.50 5.90 0.070 0.220
30R110 1.10 2.20 0.7 5.50 6.60 0.050 0.170
30R135 1.35 2.70 0.8 6.75 7.30 0.040 0.130
30R160 1.60 3.20 0.9 8.00 8.00 0.030 0.110
30R185 1.85 3.70 1.0 9.25 8.70 0.090
30R250 2.50 5.00 1.2 12.50 10.30 0.020 0.070
30R300 3.00 6.00 2.0 15.00 10.80 0.080
30R400 4.00 8.00 2.5 20.00 12.70 0.010 0.050
30R500 5.00 10.00 3.0 25.00 14.50
30R600 6.00 12.00 3.5 30.00 16.00 0.005 0.040
30R700 7.00 14.00 3.8 35.00 17.50 0.030
30R800 8.00 16.00 4.0 40.00 18.80 0.020
30R900 9.00 18.00 4.2 40.00 20.00

Заключение

Полимерные предохранители (Polyfuse, Resettable PTC) это не аналог плавких предохранителей и по сравнению с ними - инерционные устройства, что необходимо учитывать при выборе предохранителя для конкретного приложения. Следует также принимать меры для ограничения протекающего тока и падения напряжения на нем. В некоторых случаях даже сопротивление соединительных проводов, например, электропроводка транспортного средства или внутреннее сопротивление аккумулятора может ограничить ток до допустимого уровня в цепи предохранителя.

Нельзя забывать, что при восстановлении полимерного предохранителя его характеристики ухудшаются после каждого срабатывания, поэтому на реальное число срабатываний влияют также специфические особенности эксплуатации некоторых приборов (например, тех, в которых перегрузка по току - частое явление).

Ток срабатывания в значительной мере зависит от температуры окружающей среды. Если устройство предназначено для эксплуатации в расширенном диапазоне температур, использование полимерных предохранителей потенциально может привести к ложным срабатываниям.

Диапазон рабочих температур полимерных предохранителей всего -40…85 °С. На Рис. 3 приведены графики зависимости номинальных параметров от температуры для плавких и полимерных предохранителей.

Постоянное уменьшение габаритных размеров современной портативной электроники влечет за собой уменьшение размеров используемых компонентов. Полимерные SMD- предохранители типоразмера 0402 и 0603 можно с успехом применять в ноутбуках, мобильных телефонах и других интеллектуальных гаджетах.

В Табл. 1...3 приведены параметры полимерных предохранителей, выпускаемых компанией Littelfuse, на Рис. 4 - возможные варианты их использования.

Более полную информацию о полимерных предохранителях компании Littelfuse можно найти в .