Самовосстанавливающийся предохранитель принцип работы. Самовосстанавливающиеся предохранители компании Littelfuse

Самовосстанавливающиеся предохранители POLYFUSE® компании Littelfuse представляют собой полимерные терморезисторы с положительным температурным коэффициентом (PTC). В ряде приложений они становятся отличной заменой стандартным плавким предохранителям.

Для долгой и надежной работы электронных цепей необходимо обеспечить их защиту от перегрузок по току и напряжению. Традиционным способом защиты от перегрузки по току является использование плавких или самовосстанавливающихся предохранителей. Самовосстанавливающиеся предохранители – это терморезисторы с положительным температурным коэффициентом (Positive Temperature Coefficient, PTC).

Главным особенностью PTC является резкое скачкообразное изменение сопротивления при разогреве. Именно это свойство используется для защиты от перегрузок по току. При увеличении тока выше уровня срабатывания, PTC разогревается и размыкает цепь.

Современные PTC изготавливаются из полимерных материалов.

Компания Littelfuse предлагает различные типы полимерных самовосстанавливающихся термопредохранителей (PPTC):

  • PPTC для поверхностного монтажа различных типоразмеров (0402, 0603, 0805, 1206, 1210, 1812, 2016, 2920). Для них характерны токи срабатывания от 300 мА до 14 А;
  • выводные PPTC, которые имеют диапазон токов срабатывания 0,16…23,8 А;
  • PPTC типа Battery Strap, которые оптимизированы для приложений с батарейным питанием (ноутбуки, планшеты и другие). Они имеют низкопрофильное исполнение и малое сопротивление.

Свойства PPTC в значительной степени определяются особенностями их конструкции. Рассмотрим ее подробнее.

Устройство и принцип работы PPTC

Существует несколько основных компаний, которые производият PPTC. Каждая из них запатентовала и использует свою марку: Polyfuse (Littelfuse), PolySwitch (TE Connectivity), Semifuse (ATC Semitec), Fuzetec (Fuzetec Technology), Multifuse (Bourns). Несмотря на отличия в названии, все PPTC имеют одинаковый принцип работы и сходную структуру. Рассмотрим ее на примере самовосстанавливающихся предохранителей производства компании Littelfuse.

PPTC представляет собой пластину непроводящего полимерного материала (рисунок 1). Как правило, это полиэтилен. При низких температурах полимер имеет преимущественно кристаллическое строение. Однако монокристаллическая структура не образуется. Это значит, что между отдельными кристаллическими участками оказываются незаполненные пространства. В процессе изготовления в эти пространства внедряют проводящий элемент – графит.

Благодаря графитовым каналам в неразогретом состоянии PPTC является проводником с низким собственным сопротивлением.

При разогреве выше определенной температуры перехода (обычно Тперехода порядка 125°C), молекулы полимера получают дополнительную энергию, и кристаллическая структура начинает трансформироваться в аморфную. Этот процесс сопровождается механическим расширением. Полимер вытесняет графит. В результате графитовые каналы разрываются, сопротивление резко увеличивается, а PPTC переходит в непроводящее состояние (рисунок 1, рисунок 2).

Когда температура предохранителя понижается, полимер начинает кристаллизоваться. Графитовые каналы образуются вновь, что приводит к возвращению проводящих свойств. В этом и состоит суть самовосстановления предохранителя. Стоит отметить, что величина сопротивления после восстановления всегда больше первоначальной. Об учете этого свойства будет сказано ниже.

Число переходов от проводящего состояния к непроводящему и обратно оказывается практически неограниченным. Это значит, что при отсутствии катастрофических факторов PPTC является, по сути, вечным предохранителем.

При использовании PPTC в качестве токоограничителя важным оказывается его свойство саморазогрева. В нормальном состоянии PPTC находится в проводящем состоянии. При протекании тока он, как и все элементы, рассеивает мощность Pd = I²R, где R – собственное сопротивление предохранителя. Если ток достаточно мал, то мала рассеиваемая мощность. В этом случае перегрев компонента оказывается незначительным, и большого роста сопротивления из-за саморазогрева не происходит.

Однако если ток имеет большое значение, то происходит значительное выделение тепла. Если температура превысит Tперехода – PPTC перейдет в непроводящее состояние и электрическая цепь окажется разомкнутой. В этом и состоит суть использования PPTC в качестве элемента защиты от перегрузок по току. Если аварийное состояние устранено, то предохранитель остывает и восстанавливает проводящие свойства.

Основные характеристики PPTC

Основными эксплуатационными характеристиками PPTC являются электрические и временные параметры, а так же температурные зависимости.

Ток удержания (Ihold), А – максимальный ток, который может пропускать PPTC без перехода в непроводящее состояние при заданной температуре окружающего воздуха (обычно указывается для температуры 20…25°C).

Ток срабатывания (Itrip), А – минимальный ток, при котором PPTC переходит в непроводящее состояние при заданной температуре окружающего воздуха.

В большинстве случаев токовые характеристики оказываются основными при выборе предохранителя.

Ток утечки. PPTC в непроводящем состоянии имеет конечное сопротивление. Это значит, что он не в состоянии полностью разорвать цепь, и через нее могут протекать токи утечки. Иногда этот параметр указывают в документации.

Максимальный ток (Imax), А – максимальный ток, который PPTC может выдержать без разрушения.

Максимальное напряжение (Vmax), В – максимальное напряжение, которое может выдержать PPTC без повреждения при протекании максимального тока Imax. Очевидно, что значение Vmax должно покрывать требования конкретного приложения. При этом следует учитывать не только номинальные значения напряжений, но и возможность возникновения помех. Например, в легковых автомобилях номинальное напряжение бортовой сети не превышает 16 В, а уровень помех может превышать 100 В.

Мощность рассеивания при переходе (Pd), Вт – мощность, рассеиваемая PPTC при переходе в непроводящее состояние при заданной температуре окружающего воздуха.

Как было отмечено в предыдущем разделе, при восстановлении PPTC его сопротивление не принимает исходное значение. Оно оказывается выше. Сопротивления PPTC до монтажа, после монтажа и после восстановления будут отличаться. В документации приводят несколько различных параметров сопротивления.

Минимальное начальное сопротивление (Rmin), Ом – минимальное сопротивление PPTC в проводящем состоянии до монтажа на плату.

Максимальное сопротивление после восстановления (Rimax), Ом – минимальное сопротивление PPTC после одного часа восстановления при заданной температуре окружающего воздуха.

Время срабатывания, с – характеризует время перехода PPTC в непроводящее состояние при протекании тока. Имеет сильную зависимость от величины тока и температуры окружающей среды. Чем больше ток и температура, тем быстрее происходит переход. Диапазон времен срабатывания начинается от единиц миллисекунд.

Рабочий диапазон температур, °C, как правило, составляет -40…85°C. В этом диапазоне предохранитель не достигает температуры перехода.

Большая часть характеристик PPTC имеет сильную зависимость от температуры. Наиболее важной для практического применения является температурная зависимость тока срабатывания. Она носит линейный характер (рисунок 3). Из рисунка видно, что ток срабатывания увеличивается в три раза при переходе от 85°С до – 40°С. Аналогичные зависимости имеют и другие параметры. Эти особенности следует учитывать при проектировании схем защиты.

Несмотря на то, что традиционные плавкие предохранители имеют множество достоинств, PPTC являются незаменимыми во множестве приложений.

Качественное сравнение традиционных плавких предохранителей и PPTC

В большинстве случаев выбор между обычными плавкими предохранителями и PPTC делается исходя из требований конкретного приложения. Преимущества и недостатки каждого из решений определяются принципом работы этих защитных элементов (таблица 1).

Таблица 1. Качественное сравнение плавких предохранителей и PPTC

Параметр Плавкий предохранитель Самовосстанавливающийся PPTC
Число использований Однократное Многократное
Затраты на обслуживания Замена при каждом срабатывании Отсутствуют
Качество ограничения Полный разрыв цепи Есть токи утечки
Токи утечки, мА Отсутствуют До сотен
Минимальный уровень ток срабатывания Единицы А Сотни мА
Максимальный уровень тока ограничения, А Тысячи Десятки
Максимальное напряжение, В Типовое: до 600 Типовое: до 60
Максимальная рабочая температура, °С 125 85
Температурная зависимость тока срабатывания Слабая Сильная
Величина сопротивления в проводящем состоянии, мОм Десятки Сотни
Время срабатывания, мс Десятки Десятки

Плавкий предохранитель представляет собой металлический проводник (или проволоку), который плавится при возникновении перегрузки по току. При этом для восстановления проводящей цепи необходимо заменить предохранитель. В итоге, для эксплуатации оборудования потребуется обслуживающий персонал, что в большинстве случаев крайне нежелательно. PPTC свободны от этого недостатка.

С другой стороны, PPTC не способны полностью разорвать электрическую цепь. Они имеют конечное значение сопротивления. Это приводит к наличию токов утечки. Для многих приложений это может быть неприемлемо. Плавкие предохранители полностью разрывают цепь.

В общем случае, плавкие предохранители используются для более мощных цепей. Типовые значения токов срабатывания для них начинаются от единиц А. PPTC подходят для маломощных приборов, которые необходимо защищать от перегрузок, начиная от сотен миллиампер.

Верхняя граница токов для плавких предохранителей значительно превышает возможности PPTC и составляет тысячи ампер.

Ограничение величины мощности защищаемых цепей происходит и за счет собственного сопротивления предохранителей в проводящем состоянии. Плавкие предохранители имеют сопротивление в несколько раз меньше, чем у PPTC.

Еще одним преимуществом плавких предохранителей является меньшая зависимость от температуры окружающей среды (рисунок 3).

Диапазон рабочих температур у PPTC более узкий. Они имеют максимальную рабочую температуру 85°С, в то время как обычные предохранители могут работать при 125°С.

Важным параметром при выборе типа защитного элемента является максимальное рабочее напряжение. У PPTC типовым является напряжение до 60 В. Для плавких предохранителей типовое напряжение достигает сотен вольт.

Современная портативная электроника накладывает ограничения на габариты используемых компонентов. PPTC для поверхностного монтажа выполняются в миниатюрных корпусах, в том числе – 0402. Это делает их незаменимыми в ноутбуках, сотовых телефонах и других гаджетах.

Подводя итог приведенным рассуждениям, можно утверждать, что оба типа предохранителей имеют как достоинства, так и недостатки. Выбор между ними можно сделать только с учетом особенностей конкретного приложения.

PPTC будут предпочтительны в целом ряде случаев:

  • в приложениях с требованием минимальных затрат на обслуживание;
  • для слаботочных и низковольтных цепей;
  • в портативной электронике с ограничениями к габаритам элементов;
  • в потребительской, бытовой и другой электронике, работающей в узком температурном диапазоне.

Приведем конкретные примеры таких приложений (рисунок 4): сети с использованием Power Over Ethernet, USB1.1 и USB 2.0, сотовые телефоны и зарядные устройства, компьютерные интерфейсы, например, IEEE 1394 FireWire, домашние телефоны и так далее.

Обзор PPTC компании Littelfuse

Компания Littelfuse предлагает самовосстанавливающиеся предохранители POLYFUSE® для разных типов монтажа:

  • PPTC для поверхностного монтажа серий , ;
  • выводные PPTC серий , ;
  • PPTC типа Battery Strap, оптимизированные для приложений с батарейным питанием.

Наиболее популярными разновидностями самовосстанавливающихся предохранителей являются PPTC для поверхностного монтажа и выводные. Рассмотрим их более подробно.

SMD PPTC. Номенклатура SMD-предохранителей включает в себя десять серий (таблица 2). Все серии выполняются для рабочего диапазона температур -40…85°C.

Таблица 2. SMD PPTC производства компании Littelfuse

Наименование Типоразмер Ток удержания, А Ток
срабатывания, А
Максимальное
напряжение, В
Максимальный
ток, А
0402L 0402 (1005) 0,1…0,5 0,3…1,0 6 40/50 -40…85
0603 (1608) 0,04…0,5 0,12…1,0 6…15 40
0805 (2012) 0,10…1,10 0,3…2,00 6…24 40/100
1206 (3216) 0,125…2,00 0,29…3,5 6…30 100
1210 (3225) 0,05…2,0 0,15…4 6…30 10/100
1812 (4532) 0,10…3,0 0,3…5 6…60 10/20/40/100
2016 (5041) 0,30…2,00 0,6…4,2 6…60 20/40
2920 (7351) 0,30…5,00 0,6…10 6…60 10/40
0,13 0,26 60 3
0402…2920 0,1…7,0 0,3…14 6/12 40/50

Минимальное значение тока удержания составляет 40 мА (серия ). Максимальное значение – 7 А (Серия LoRho, корпус 2920).

Диапазон возможных значений тока срабатывания начинается от 300 мА (серия ) и ограничивается величиной 14 А (Серия LoRho, корпус 2920).

Для серии LoRho характерны наименьшие значения сопротивлений в проводящем состоянии: Rmin от 1 мОм, R1max от 7 мОм (корпус 2920).

Наименьшими габаритами обладает серия 0402L. Длина корпуса для них составляет 1 мм, а ширина – 0,5 мм.

Выводные PPTC. Перечень выводных PPTC включает в себя семь серий (таблица 3). Диапазон рабочих температур для всех выводных самовосстанавливающихся предохранителей составляет -40…85°C.

Таблица 3. Выводные PPTC от Littelfuse

Наименование Ток удержания, А Ток срабатывания, А Максимальное
напряжение, В
Максимальный ток, А Диапазон рабочих температур, °C
0,75…2,50 1,3…5 6/16 40 -40…85
2,50…14,00 4,7…23,8 16 100
0,90…9,00 1,8…18 30 40
0,10…3,75 0,2…7,5 60 40
0,20…3,75 0,4…7,5 72 40
0,08…0,18 0,16…0,65 60 3/10
0,15…0,16 0,3…0,32 60 3

Наиболее низковольтной серией является USBR. Для нее рабочее напряжение составляет 6 В. Максимальным рабочим напряжением обладает серия – 60 В в проводящем состоянии и до 600 В в режиме прерывания тока.

Минимально доступное значение тока удержания достигается в серии – всего 80 мА, а максимальное значение в 14 А характерно для представителей серии . Для этой же серии достигается максимальное значение тока срабатывания – 23,8 А.

Как видно из представленного обзора, пользователю предлагается широкий выбор PPTC. Для нахождения оптимального предохранителя для стандартных и типовых приложений можно воспользоваться рекомендациями инженеров Littelfuse (таблица 4).

Таблица 4. Области применения PPTC производства Littelfuse

Наименование
Телекоммуникационное оборудование
Требования Ul60950, TIA-968-A, GR-1089 + + +
Требования ITU-T + + +
CPE (Customer Premises Equipment) + + +
Аналоговая телефония + + +
T1/E1/J1 и HDSL + + +
ISDN + + +
ADSL + + +
Кабельная телефония + + +
PBX/KTS и Key Telephone System + + +
Компьютерная техника
Процессоры + + + +
USB + + + + + + + + +
IEEE1284 + + + + + +
IEEE 802.3 + + + + +
IEEE 1394 + + + +
Порты ввода/вывода + + + + + + +
PC Card + + + + + + + + +
SCSI + + + + + + +
Видео порт + + + + + + +
ЖК-мониторы + + + + + + + + +
Потребительская электроника
Set Top Box + + + + +
Микрофоны +
Считыватели карт памяти + +
Мобильные телефоны + + + + + +
AC/DC-адаптеры + + + + + + + + + +
Входы портативных устройств + + + + + + + +
Управление двигателями + + + + + +
Высоко-индуктивные цепи + + + + + +
Медицинское оборудование
Измерительные цепи + + +

Если же предполагается применение PPTC в нестандартных схемах, то стоит воспользоваться предложенным компанией Littelfuse стандартным алгоритмом выбора.

Алгоритм выбора PPTC компании Littelfuse

Алгоритм, предлагаемый инженерами Littelfuse, состоит из нескольких шагов.

  • На первом этапе необходимо определить основные электрические характеристики нагрузки: номинальные рабочие ток и напряжение, максимально допустимый ток, температуру окружающей среды, максимальную длительность нахождения в режиме перегрузки по току. Кроме того, следует спрогнозировать параметры возможных аварийных ситуаций и помех: значение возможного тока перегрузки, уровень напряжения помех. Дополнительными требованиями могут стать ограничения по габаритам и допустимому значению сопротивления предохранителя. Если для приложения предъявляются требования по стандартизации, то это также следует учесть.
  • Вторым шагом является выбор соответствующего требованиям PPTC.
  • Далее следует проверить, не выходят ли значения токов удержания и срабатывания за рамки допустимых значений во всем рабочем диапазоне температур. Аналогичным образом следует проанализировать время срабатывания. Если время срабатывания будет слишком большим, защищаемое устройство может выйти из строя. С другой стороны, слишком раннее срабатывание – также нежелательное явление.
  • Следует проверить, что выбранный PPTC соответствует требованиям по уровням напряжения с учетом помех.
  • Если требуется – необходимо проверить ограничения на габариты устанавливаемого предохранителя.
  • Наконец, необходимо проверить функционирование схемы в реальных условиях.

Заключение

Компания Littelfuse выпускает широкий спектр пассивных компонентов, таких как плавкие предохранители, самовосстанавливающиеся предохранители, TVS-диоды и так далее.

Полимерные самовосстанавливающиеся PPTC, по сравнению с плавкими предохранителями, имеют как достоинства, так и недостатки. Тем не менее, в ряде приложений PPTC оказываются незаменимыми (POE, USB, IEEE 1394 Firewire и других).

Богатый выбор наименований позволит разработчикам найти наиболее подходящий предохранитель как для стандартных приложений, так и для особенных уникальных устройств.

Литература

  1. Positive Temperature Coeficient (PTC) Thermistor Products. PRODUCT CATALOG & DESIGN GUIDE. 2008, Littelfuse.
  2. Electronics Circuit Protection. Product Selection Guide. 2013, Littelfuse.
  3. Why does USB 2.0 need Circuit Protection? 2013, Littelfuse.
  4. Документация на компоненты взята с официального сайта Littelfuse http://www.littelfuse.com/.

В комментариях к моей прошлой статье меня неоднократно корили за то, что не упомянул способ защиты с использованием самовосстанавливающегося предохранителя. Чтобы исправить эту несправедливость поначалу хотел просто добавить в статью дополнительную схему защиты и короткое к ней пояснение. Однако решил, что тема самовосстанавливающихся предохранителей заслуживает отдельной публикации. Дело в том, что устоявшееся их название не слишком отражает суть вещей, а копаться в даташитах и разбираться в принципе работы при применении таких “элементарных” компонентов, как предохранитель, часто начинают уже после того, как начала глючить первая партия плат. Хорошо если не серийная. Итак, под катом вас ждёт попытка разобраться, что же это за зверь такой PolySwitch , оригинальное название, кстати, лучше отражает суть прибора, и понять с чем его едят, как и в каких случаях имеет смысл его использовать.

Физика тёплого тела.

PolySwitch , это PPTC (Polymeric Positive Temperature Coefficient) прибор, который имеет положительный температурный коэффициент сопротивления. По правде, гораздо больше общих черт он имеет с позистором, или биметаллическим термопредохранителем, чем с плавким, с которым его обычно ассоциируют не в последнюю очередь благодаря усилиям маркетологов.
Вся хитрость заключается в материале из которого наш предохранитель изготовлен - он представляет собой матрицу из не проводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек.


Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце-концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После остывания прибора происходит процесс кристаллизации и предохранитель снова становится превосходным проводником.
Как выглядит температурная зависимость сопротивления видно из следующего рисунка


На кривой отмечено несколько характерных для работы прибора точек. Наш предохранитель является отличным проводником пока температура находится в рабочем диапазоне Point1 < T

Идеальный сферический конь в вакууме.

Пора переходить от теории к практике. Соберём простую схему защиты нашего ценного устройства, настолько простую, что изображённая по ГОСТу она выглядела бы просто неприлично.


Что же будет происходить, если в цепи вдруг возникнет недопустимый ток, превышающий ток срабатывания? Сопротивление материала из которого прибор изготовлен начнёт возрастать. Это приведёт к увеличению падения напряжения на нём, а значит и рассеиваемой мощности равной U*I. В результате температура растёт, это снова приводит к… В общем начинается лавинообразный процесс нагрева прибора с одновременным увеличением сопротивления. В результате проводимость прибора падает на порядки и это приводит к желаемому уменьшению тока в цепи.
После того как прибор остывает его сопротивление восстанавливается. Через некоторое время, в отличие от предохранителя с плавкой вставкой, наш Идеальный Предохранитель снова готов к работе!
Идеальный ли? Давайте вооружившись нашими скромными познаниями в физике прибора попробуем разобраться в этом.

Гладко было на бумаге, да забыли про овраги.

Пожалуй, главная проблема заключается во времени. Время вообще такая субстанция, которую очень трудно победить, хотя многим очень хотелось… Но не будем о политике - ближе к нашим полимерам. Как вы наверное уже догадались, я веду к тому, что изменение кристаллической структуры вещества гораздо более длительный процесс чем перестройка дырок с электронами, например в туннельном диоде. Кроме этого, для того чтобы разогреть прибор до нужной температуры, требуется некоторое время. В результате, когда ток через предохранитель вдруг превысит пороговое значение, его ограничение происходит совсем не мгновенно. При токах, близких к пороговому, этот процесс может занять несколько секунд, при токах близких к максимально допустимому для прибора, доли секунды. В результате за время срабатывания такой защиты сложное электронное устройство успеет выйти из строя, возможно, не один десяток раз. В подтверждение привожу типичный график зависимости времени срабатывания (по вертикали) от вызвавшего это срабатывание тока (по горизонтали) для гипотетического PTVC прибора.


Обратите внимание, что на графике приведены для сравнения две зависимости, снятые при разных температурах окружающей среды. Надеюсь вы ещё помните, что первопричиной перестройки кристаллической структуры служит температура материала, а не протекающий через него ток. Это значит, что при прочих равных, для того чтобы разогреть прибор до состояния метаморфозы от более низкой температуры необходимо затратить больше энергии чем от более высокой, а значит, и процесс этот в первом случае займёт больше времени. Как следствие, получаем зависимость таких важнейших параметров прибора, как максимальный гарантированный ток нормальной работы и гарантированный ток срабатывания от температуры окружающей среды.

Прежде чем привести график уместно упомянуть об о основных технических характеристиках данного класса приборов.

  • Максимальное рабочее напряжение Vmax - это максимально допустимое напряжение, которое может выдерживать прибор без разрушения при номинальном токе.
  • Максимально допустимый ток Imax - это максимальный ток, который прибор может выдержать без разрушения.
  • Номинальный рабочий ток Ihold - это максимальный ток, который прибор может проводить без срабатывания, т.е. без размыкания цепи нагрузки.
  • Минимальный ток срабатывания Itrip - это минимальный ток через прибор, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.
  • Первоначальное сопротивление Rmin, Rmax - это сопротивление прибора до первого срабатывания (при получении от изготовителя).


В нижней части графика находится рабочая область прибора. Что произойдёт в средней части зависит, судя по всему, от взаимного расположения звёзд на небе, ну а побывав в верхней части графика прибор отправится в путешествие (trip), которое вызовет метаморфозы его кристаллической структуры и как следствие срабатывание защиты.
Таким образом, в устройствах предназначенных для работы в широком температурном диапазоне применять PPTC следует с осторожностью. Если вы считаете, что проблемы у нашего кандидата на звание Идеального Предохранителя закончились, то заблуждаетесь. Есть у него ещё одна слабость, присущая людям. После стрессового состояния, вызванного чрезмерным перегревом, ему необходимо придти в норму. Однако физика горячего тела очень похожа на физику мягкого. Как и человек после инсульта, прежним наш предохранитель уже не станет никогда! Для убедительности приведу очередной график, процесса реабилитации после стресса, вызванного превышением протекающего тока, который, меткие на слово англичане, обозвали Trip Event. и как они не боятся нашего роспотребнадзора?


Из графика видно, что процесс восстановления может длиться сутками, но полным не бывает никогда. С каждым случаем срабатывания защиты нормальное сопротивление нашего прибора становится всё выше и выше. После нескольких десятков циклов прибор вообще теряет способность выполнять возложенные на него функции должным образом. Поэтому не стоит использовать их в случаях когда перегрузки возможны с высокой периодичностью.
Пожалуй на этом стоило бы и закончить, и наконец приступить к обсуждению областей применения и схемотехнических решений, но стоит обсудить ещё некоторое нюансы, для чего посмотрим на основные характеристики широко распространённых серий нашего героя дня.


При выборе элемента, который вы будете использовать в проекте обратите внимание на максимально допустимый рабочий ток. Если высока вероятность его превышения, то стоит обратиться к альтернативному виду защиты, либо ограничить его с помощью другого прибора. Ну например проволочного резистора.
Ещё один очень важный параметр - максимальное рабочее напряжение. Понятно, что когда прибор находится в нормальном режиме напряжение на его контактах очень мало, но вот после перехода в режим защиты оно может резко возрасти. В недалёком будущем этот параметр был очень мал и ограничивался десятками вольт, что не давало возможности использовать такие предохранители в высоковольтных цепях, скажем для защиты сетевых блоков питания.
В последнее время ситуация улучшилась и появились серии, рассчитанные на достаточно высокое напряжение, но обратите внимание, что они имеют весьма небольшие рабочие токи.


Скрестим ужа и трепетную лань.

Судя по тому, какое разнообразие устройств PolySwitch предлагает рынок, использовать их в разрабатываемых вами устройствах можно, а в отдельных случаях даже нужно, но к выбору конкретного прибора и способа его использования следует подходить с большой тщательностью.
Кстати, что касается схемотехники, прямая замена плавких предохранителей на PolySwitch хорошо проходит только в простейших случаях. Например: для встраивания в батарейные отсеки, или для защиты оборудования (электродвигатели, активаторы, монтажные блоки) и электропроводки в автомобильных приложениях. Т.е. устройств, которые не выходят из строя мгновенно при перегрузке. Специально для этого имеется широкий класс исполнения данных устройств в виде перемычек с аксиальными выводами и даже дисков для аккумуляторов.

В большинстве же случаев PolySwitch стоит комбинировать с более быстродействующими устройствами защиты. Такой подход позволяет компенсировать многие из их недостатков, и в результате их с успехом применяют для защиты периферийных устройств компьютеров. В телекоммуникации, для защиты АТС, кроссов, сетевого оборудования от всплесков тока, вызванных попаданием линейного напряжения и молниями. А так же при работе с трансформаторами, сигнализациями, громкоговорителями, контрольно-измерительным оборудованием, спутниковым телевидением и во многих других случаях.

Для примера рассмотрим гипотетическую схему комплексно решающую задачу построения сверхзащищённого светодиодного драйвера с питанием от сети переменного напряжения 220В.


В первой ступени самовосстанавливающийся предохранитель применён в связке с проволочным резистором и варистором. Варистор защищает от резких бросков напряжения, а резистор ограничивает протекающий в цепи ток. Без этого резистора в момент включения импульсного источника питания в сеть через предохранитель может течь недопустимо большой импульс тока, обусловленный зарядом входных ёмкостей. Вторая ступень защиты предохраняет от неправильного переключения полярности, или ошибочном подключении источника питания со слишком большим напряжением. При этом, в момент аварийной ситуации, бросок тока принимает на себя защитный TVS диод, а PolySwitch ограничивает протекающую через него мощность, предотвращая тепловой пробой. Кстати, эта связка настолько напрашивается в ходе разработки схемотехники и так широко распространена, что породила отдельный класс приборов - PolyZen. Весьма удачный гибрид ужа и трепетной лани.

Ну, и на выходе наш самовосстанавливающийся предохранитель служит для предотвращения короткого замыкания, а так же на случай выхода из рабочего режима светодиодов, или их драйвера в результате перегрева, либо неисправности.
В схеме также присутствуют элементы защиты от статики, но это уже не тема данной статьи…

P.S

Специально для того, чтобы в очередной раз не оскорблять чувства пользователя kacang хочу отметить, что при подготовке статьи были использованы материалы из следующих источников:
ru.wikipedia.org
www.platan.ru/
www.te.com/
www.led-e.ru/
а также отрывки знаний из моей головы, почерпнутые в ходе реализации различных проектов по разработке радиоэлектронных устройств , обучения в МИЭТе и привычки, привитой со школьной скамьи, во всём искать физический смысл.

Разработчики электронных устройств наверняка знают, к каким фатальным для этих устройств последствиям может привести перегрузка по току. Существует несколько способов защиты от таких ситуаций. Самый распространенный из них - использование плавких предохранителей. Безусловно, они работают хорошо, но рассчитаны только на одно срабатывание. При выходе плавкого предохранителя из строя он требует замены. Это не всегда удобно, а во многих случаях требуется вмешательство квалифицированного специалиста. Преимущества самовосстанавливающихся предохранителей (далее - СП) фирмы Bourns заключаются в том, что они рассчитаны на многократное срабатывание, а их разрушение происходит при токе, во много раз превышающем ток срабатывания. Уже сегодня СП нашли себе широкое применение в различных областях, таких как персональные компьютеры, трансформаторы, электромоторы, звуковоспроизводящая техника, аккумуляторные батареи, медицинское и измерительное оборудование, автомобильная электроника и др.

Устройство

Самовосстанавливающиеся предохранители изготавливаются из проводящего пластика, отформованного в тонкий лист с напылением электродов с обеих плоскостей. Проводящий пластик - это особое вещество, ноу-хау фирмы Bourns, состоящее из непроводящего электрический ток кристаллического полимера и распределенных в нем мельчайших частиц технического углерода, проводящих электрический ток. Электроды гарантируют равномерное распределение энергии по всей площади поверхности, к ним крепятся проволочные или лепестковые выводы. Особенностью, которая позволяет использовать этот материал в качестве СП, является то, что этот проводящий пластик проявляет высокий нелинейный положительный температурный коэффициент сопротивления (ТКС). Положительным ТКС обладает довольно большое количество материалов. Особенность материала СП - это сильная крутизна графика зависимости сопротивления от температуры самого СП или окружающей среды и практически скачкообразное изменение сопротивления из проводящего в непроводящее (рис. 1). До определенной, так называемой «переходной» температуры, сопротивление СП практически не возрастает. При достижении «переходной» температуры сопротивление возрастает в логарифмической пропорции.

Принцип работы

При комнатной температуре материал СП имеет кристаллическую структуру. Проводящие частицы технического углерода расположены в нем по границам кристаллов достаточно плотно и близко друг к другу, образуя цепочки, по которым может идти электрический ток (рис. 2).

При возникновении аварийной ситуации (например, при коротком замыкания нагрузки в цепи, где стоит СП) через СП начинает течь ток, превышающий номинальный, вследствие чего температура его материала начинает расти. Поскольку это самонагревание продолжается, температура СП продолжает расти, пока не достигнет так называемой температуры «фазовой трансформации», при которой происходит изменение фазового состояния полимера из кристаллического в аморфное, сопровождаемое небольшим расширением. Проводящие частицы технического углерода более не сжаты кристаллами полимера в плотные цепочки, движутся относительном друг друга и больше не могут проводить электрический ток. В результате сопротивление материала СП резко возрастает, и он выключается (рис. 3).

СП остается в «горячем» состоянии, обеспечивая постоянную защиту до тех пор, пока находится под напряжением или пока не будут устранены причины его срабатывания. Выключение - это реверсивный процесс. После устранения причин выключения СП охлаждается, полимер снова кристаллизуется, проводящие цепочки восстанавливаются, и сопротивление СП быстро возвращается к первоначальному уровню. СП снова готов к работе.

Схема включения

Схема включения СП такая же, как для обычных плавких предохранителей. СП включается в цепь питания последовательно с нагрузкой (см. рис. 4).

Технические характеристики

В таблице 1 даны электрические параметры СП.

Таблица 1. Электрические характеристики самовосстанавливающихся предохранителей Multifuse фирмы Bourns

Максимальное рабочее напряжение (Vmax) - это максимально допустимое напряжение, которое может выдерживать СП без разрушения при номинальном токе.

Максимально допустимый ток (Imax) - это максимальный ток, который СП может выдержать без разрушения.

Номинальный рабочий ток (Ihold) - это максимальный ток, который СП может проводить без срабатывания, т.е. без размыкания цепи нагрузки.

Минимальный ток срабатывания (Itrip) - это минимальный ток через СП, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.

Первоначальное сопотивление (Rmin–Rmax) - это сопротивление СП до первого срабатывания (при получении от изготовителя).

Так как СП - это устройства с ярко выраженным положительным ТКС, их характеристики зависят от температуры окружающей среды. В таблице 2 приводится зависимость нормального рабочего тока и минимального тока срабатывания от температуры окружающей среды.

Таблица 2. Зависимость нормального рабочего тока и минимального тока срабатывания от температуры окружающей среды

На всякое нагревание, как известно, требуется какое-то время. В связи с тем, что СП нагреваются, они переключаются не мгновенно, а требуют некоторого времени, которое зависит не только от температуры окружающей среды, но и от протекающего через них тока перегрузки.

В таблице 1 указано время срабатывания при токе, в 5 раз превышающем нормальный рабочий ток (Ihold).

Зависимость времени срабатывания от тока перегрузки показана на графиках (рис. 7).

Типы корпусов, габаритные и установочные размеры

Самовосстанавливающиеся предохранители Multifuse выпускаются в нескольких типах корпусов:

  • Дисковые с радиальными проволочными выводами: серии MF-R, MF-RX (рис. 5). Общего применения, для печатного монтажа в отверстия или для навесного монтажа.
  • Для поверхностного монтажа: серии MF-SM, MF-MSM. Общего применения.
  • В плоских прямоугольных корпусах с ленточными выводами: серии MF-S, MF-LS (рис. 6). Применяются для защиты аккумуляторных батарей от короткого замыкания и перегрева в процессе зарядки.
  • В бескорпусном исполнении в виде дисков без выводов.

Да, есть такой хитроумный электронный компонент с очень длинным названием - самовосстанавливающийся предохранитель. Что это за «зверь» такой и как работает? Об этом и пойдёт речь.

Все знают обычный плавкий предохранитель. Устроен он просто и работает незаурядно. Принцип его работы основан на тепловом действии электрического тока.

Берётся тонкий медный провод, который выдерживает определённую силу тока, помещается в стеклянную или керамическую колбу, чтобы при срабатывании расплавленный металл не разбрызгивался в разные стороны. Иногда этот защитный элемент спасает при коротком замыкании в схеме, но вот беда, сам он «умирает» навсегда.

Для замены неисправного плавкого предохранителя требуется вскрывать корпус устройства, и заменять сгоревший предохранитель. Но производить такую операцию не всегда удобно, да и требуется она не всегда. Поэтому в таких случаях самовосстанавливающийся предохранитель является весьма логичной заменой плавкому предохранителю.

Самовосстанавливающиеся предохранители активно используются в компьютерах и игровых приставках для защиты портов (например, USB, HDMI), а также аккумуляторных батарей в портативной технике.

Итак, давайте разберёмся в том, как устроен самовосстанавливающийся предохранитель (сокращённо будем называть его СП ), а также каковы его основные параметры.

Самовосстанавливающийся предохранитель изготавливается из специального проводящего пластика. Этот пластик вещество особое. Он состоит из непроводящего кристаллического полимера и введёнными в него мельчайшими частицами технического углерода. Частицы технического углерода распределены в объёме полимера и свободно проводят электрический ток .

Сам пластик формуют в тонкий лист и на плоскости напыляют токоведущие электроды. За счёт электродов удаётся распределить энергию по всей площади поверхности. К электродам крепят лепестковые или проволочные выводы, за счёт которых СП подключают в электрическую цепь.

Основная особенность проводящего пластика - это высокий нелинейный положительный температурный коэффициент сопротивления (ТКС ). Проще говоря, проводящий пластик проводит ток до тех пор, пока его температура не превысит определённый порог.

После этого сопротивление проводящего пластика резко увеличивается, что и приводит к разрыву электрической цепи. Это происходит потому, что при превышении температурного порога кристаллическая структура полимера трансформируется в аморфную, а цепочки технического углерода, по которым и проходил ток, разрушаются. Это приводит к резкому увеличению сопротивления.

Откуда же появляется нагрев, который приводит к изменению фазового состояния полимера? Повышение температуры полимера происходит потому, что при аварийном режиме через самовосстанавливающийся предохранитель начинает течь ток, который превышает номинальный (т. е. рабочий). При этом за счёт теплового действия тока температура материала предохранителя увеличивается. Это в свою очередь приводит к «срабатыванию» предохранителя.

Параметры самовосстанавливающихся предохранителей.

Для того чтобы грамотно подобрать самовосстанавливающийся предохранитель для конкретного устройства нужно знать его основные параметры. Рассмотрим их.

    Максимальное рабочее напряжение (V max или U max , V). Напряжение, которое способен выдержать без разрушения самовосстанавливающийся предохранитель при протекании через него номинального тока. Например, для защиты USB порта подойдёт СП с максимальным рабочим напряжением 6 вольт.

    Номинальный рабочий ток или ток удержания (I HOLD или I h , A). Ток, который может проводить через себя самовосстанавливающийся предохранитель без «срабатывания».

    Минимальный ток срабатывания (I trip или I T , A). Минимальный ток через СП, при котором происходит переход от проводящего состояния к непроводящему. Иными словами это ток, при котором самовосстанавливающийся предохранитель «срабатывает» - размыкает цепь.

    Минимальное и максимальное сопротивление (R min и R 1max , Ohms). Это сопротивление самовосстанавливающегося предохранителя. По-другому можно сказать, что это сопротивление СП в рабочем, проводящем состоянии. Параметр R min - это минимальное сопротивление СП, а R 1max - это сопротивление предохранителя спустя 1 час после последнего срабатывания. Оба параметра указываются для конкретной температуры, например для 23 0 C. R min и R 1max обычно указывается более просто, например, так: R = 0,5…1,17 (Ом).

    На самом деле это очень важный параметр. Чем он меньше, тем лучше, так как предохранитель всегда включается последовательно с потребителем тока (перед нагрузкой). А, как известно, на сопротивлении теряется мощность. Для приборов, питающихся от автономных источников питания (аккумуляторов, батареек) лучше подбирать СП с малым сопротивлением в рабочем состоянии.

    Рабочая температура самовосстанавливающегося предохранителя обычно лежит в интервале от -40 0 С до +85 0 С . При такой температуре сопротивление СП практически не меняется и лежит в пределах R min - R max . Температура «защёлкивания», или по-другому, срабатывания обычно составляет от +125 0 С и выше.

    Ещё один параметр. Максимальный допустимый ток (I max , A). Это максимальный ток короткого замыкания, который выдерживает самовосстанавливающийся предохранитель без разрушения при номинальном напряжении (V max). Если ток через СП превысит величину I max , то он выйдет из строя навсегда (на деле - «сгорит»). Обычно величина этого параметра лежит в интервале нескольких десятков ампер (40 - 100 A).

    Также очень важный параметр - это скорость срабатывания СП (Max. Time to Trip ). Так как на нагрев требуется некоторое время, то предохранитель срабатывает не мгновенно, а спустя какое-то время. Оно достаточно мало и составляет долю секунды. Время срабатывания зависит от тока перегрузки и температуры окружающей среды. Такие параметры, как время срабатывания указываются в документации на конкретную модель самовосстанавливающегося предохранителя.

    Самовосстанавливающиеся предохранители выпускаются как в обычных корпусах для монтажа в отверстия (технология THT), так и для поверхностного (технология SMT). СП для монтажа в отверстия внешне выглядят как варисторы и имеют либо дисковый корпус, либо прямоугольный.

    СП для поверхностного монтажа похожи на SMD резисторы , но могут иметь и другой корпус (как правило, в виде пластинки с ленточными выводами).

    Самовосстанавливающиеся предохранители выпускают такие фирмы, как Bourns и Fuzetec.

    Пример применения.

    Примером применения самовосстанавливающегося предохранителя может быть использование его в блоке питания , о котором рассказывалось на страницах сайта.

    В нем самовосстанавливающийся предохранитель используется совместно с другими элементами защиты. Срабатывание защиты не влечёт за собой необратимое перегорание предохранителя, и устройство начинает работать сразу же после устранения неисправности или короткого замыкания в питаемой схеме.

Самовосстанавливающийся предохранитель широко используется в электронике для защиты электронной аппаратуры. Полимерный компонент резко увеличивает сопротивлением при превышении порогового значения протекающего через него тока. После уменьшения напряжения через заданный интервал времени предохранитель уменьшает свое сопротивление, поэтому его назвали самовосстанавливающимся. Самовосстанавливающиеся предохранители широко используются для защиты коммуникационных портов и интерфейсов. Ведущим производителем компонентов является компания Bourns.

Интернет-магазин Платан предлагает Устройства защиты, предохранители и самовосстанавливающиеся предохранители различных производителей по конкурентной цене. Для выбора компонента используйте поиск по параметрам, техническую документацию и описание. Доставка товара осуществляется различными транспортными компаниями или самовывозом из офисов в Москве и Санкт-Петербурге, предлагаем любые виды оплаты.