Схема регулятора оборотов эл двигателя. Как сделать плавный пуск и регулятор оборотов для болгарки

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор - это часть вращения, статор - это внешний по типу магнит.
  2. Щётки, которые произведены из графита - это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор -это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим , они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов , то обороты нужны:

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно , но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений , а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы - они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора . С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 - это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий - отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора .

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Регуляторы оборотов — в англоязычном сообществе называются — Electric Speed Controller (электронный контроллер скорости) или сокращенно — ESC. Основная задача ESC – передача энергии от аккумулятора к бесколлекторному мотору. Потребность в их применении возникла вследствие некоторых особенностей БК — мотора. Вкратце говоря, аккумулятор отдает постоянный ток, а бесколлекторный мотор принимает трехфазный переменный ток.

Принцип работы

Связь с остальными компонентами мультикоптера.

На вход ESC подается напряжение с аккумулятора и сигналы от полетного контроллера, а на выход регулятор отдает управляющее напряжение для привода. Соответственно регулятор должен обеспечивать:

  1. Совместимость с полетным контроллером.
  2. Максимальный ток для мотора (рассчитывается из спецификаций мотора и пропеллера) плюс 20 – 30%.
  3. Потребление тока меньше, чем ток, отдаваемый аккумулятором поделенный на количество ESC.

*Простейшая схема подключения.

Какие регуляторы бывают?

BEC и UBEC

Дополнительно к основной функции, регуляторы оборотов могут так же передавать питание к другим узлам дрона: полетному контроллеру, сервоприводам и так далее. Это достигается внедрением в регулятор блока исключения батареи — Battery Eliminator Circuit (далее как — BEC).

Использование BEC значительно упрощает конструкцию дрона, однако такая схема обладает рядом минусов. Блок исключения батареи может перегреваться при больших перепадах напряжения и больших нагрузках. К тому же регуляторы оборотов с BEC, как правило, стоят дороже, чем регуляторы без блока.

Согласитесь, логичнее и дешевле было бы сделать отдельно ESC и отдельно один BEC. Такое решение есть и называется оно универсальный блок исключения батареи (Universal Battery Eliminator Circuit, далее как — UBEC).

Преимущества UBEC

UBEC — подключается напрямую к аккумулятору и питает нужный узел дрона. Преимущества такого подхода весьма существенны:

  1. Регуляторы оборотов будут меньше перегреваться, поскольку из них будет исключен BEC
  2. UBEC обладают большим коэффициентом полезного действия
  3. Следовательно из предыдущих двух пунктов UBEC способен отдавать больший ток с меньшим риском
  4. Отсутствие переплаты за несколько лишних BEC, располагающихся в ESС. Для некоторых полетных контроллеров крайне не рекомендуется подключать больше одного ESC BEC
  5. Меньший вес регуляторов

Виды BEC и их преимущества

BEC бывают двух видов: линейные (LBEC) и импульсные (SBEC).

  1. Линейный преобразует энергию в тепло, а при перегреве отключается. Что может приводить к неприятным результатам: в лучшем случае коптер не сможет взлететь, а в худшем — неконтролируемое падение. В связи с чем стал применяться в сборке с сервоприводами, которые в свою очередь не потребляют много тока, не позволяя блоку перегреваться.
  2. Импульсный регулирует напряжение быстрым включением и выключением питания, такой подход исключил перегрев, повысил выходную мощность, и позволил достигать КПД 90%, а также импульсные BEC выигрывают у линейных в весе. Возникающие в цепи помехи, которые отрицательно сказываются на работе радио аппаратуры, исключаются добавлением LC — фильтра.

Учитывая то, что многие производители устанавливают на свои UBECLC фильтры (а, если фильтра все-таки нет, то его можно дешево купить и легко установить), профессионалы используют в своих коптерах именно регуляторы SBEC.

Программное обеспечение ESC

Поскольку регулятор оборотов выполняет некоторые преобразования с высокой частотой и может быть настроен на различные режимы работы для него пишут отдельный софт, называемый прошивкой. Это позволяет исправлять прошлые ошибки в алгоритмах управления, создавать более совершенные прошивки (и тем самым, например, уменьшать расходы аккумулятора на среднем газу) и производить гибкие настройки. В коптерах известных компаний типа DJI смена ПО регулятора происходит автоматически при помощи полетного контроллера.

Внимание! Перезапись ПО для регуляторов скорости может повлечь за собой поломки дрона различного характера, а так же снятие с гарантийного обслуживания! Помните, что вы делаете это на свой страх и риск!

Как сменить ПО?

Сменить программное обеспечение регулятора можно несколькими способами:

  1. Используя специальную плату управления
  2. Используя полетный контроллер
  3. Используя ASP программатор

Третий вариант проще и в настоящее время активно внедряется в новые модели.

Выбор регулятора оборотов

Исходя из всего вышеперечисленного, можно выделить особые критерии выбора регулятора оборотов для дрона:

  1. Совместимость с полетным контроллером. Полетный контроллер должен поддерживать BEC и прошивку ESC.
  2. Совместимость со спецификациями мотора и аккумулятора.
  3. Наличие или отсутствие BEС и его тип (LBEC или SBEC).
  4. Теплоотвод и герметичность.

У вас есть болгарка, но нет регулятора оборотов? Вы можете изготовить его своими руками.

Регулятор оборотов и плавный пуск для болгарки

И то и другое необходимо для надёжной и удобной работы электроинструмента.

Что такое регулятор оборотов и для чего он нужен

Это устройство предназначено для управления мощностью электродвигателя. С его помощью можно регулировать скорость вращения вала. Цифры на регулировочном колесе означают изменение частоты вращения диска.

Регулятор устанавливается не на все болгарки.

Болгарки с регулятором оборотов: примеры на фото

Отсутствие регулятора сильно ограничивает применение шлифовальной машины. Скорость вращения диска влияет на качество работы болгарки и зависит от толщины и твёрдости обрабатываемого материала.

Если скорость не регулируется, то обороты постоянно держатся на максимуме. Такой режим подходит только для твёрдых и толстых материалов, таких как уголок, труба или профиль. Причины, по которым наличие регулятора необходимо:

  1. Для тонкого металла или мягкого дерева нужна более низкая скорость вращения. Иначе кромка металла оплавится, рабочая поверхность диска замылится, а дерево почернеет от высокой температуры.
  2. Для резки минералов необходимо регулировать обороты. От большинства из них на высокой скорости откалываются мелкие кусочки и место реза становится неровным.
  3. Для полировки автомобилей не нужна самая высокая скорость, иначе лакокрасочное покрытие испортится.
  4. Чтобы поменять диск с меньшего диаметра на больший, надо уменьшить обороты. Практически невозможно удержать руками болгарку с большим диском, вращающимся на огромной скорости.
  5. Алмазные диски нельзя перегревать, чтобы не испортить поверхность. Для этого снижаются обороты.

Зачем нужен плавный пуск

Наличие такого пуска - это очень важный момент. При запуске мощного электроинструмента, подключенного к сети, происходит бросок пускового тока, который во много раз превышает номинальный ток двигателя, напряжение в сети проседает. Хотя этот бросок кратковременный, он вызывает повышенный износ щёток, коллектора двигателя и всех элементов инструмента, по которым он протекает. Это может стать причиной выхода из строя самого инструмента, особенно китайского, с ненадёжными обмотками, которые могут в самый неподходящий момент сгореть во время включения. А также идёт большой механический рывок при запуске, что ведёт к быстрому износу редуктора. Такой пуск продлевает жизнь электроинструмента и увеличивает уровень комфорта при работе.

Электронный блок в УШМ

Электронный блок позволяет объединить регулятор оборотов и плавный пуск в одно целое. Электронная схема реализована по принципу импульсно - фазового управления с постепенным увеличением фазы открытия симистора. Таким блоком могут снабжаться болгарки разной мощности и ценовой категории.

Разновидности устройств с электронным блоком: примеры в таблице

Углошлифовальные машины с электронным блоком: популярные на фото

Регулятор оборотов своими руками

Регулятор оборотов устанавливается не во все модели болгарок. Можно сделать блок для регулирования оборотов своими руками или приобрести готовый.

Заводские регуляторы оборотов болгарок: фотопримеры

Регулятор оборотов болгарок Bosh Регулятор оборотов болгарок Sturm Регулятор оборотов болгарок DWT

Такие регуляторы имеют несложную электронную схему. Поэтому создать аналог своими руками не составит особого труда. Рассмотрим, из чего собирается регулятор оборотов для болгарок до 3 кВт.

Изготовление печатной платы

Простейшая схема предствалена ниже.

Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.

Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте. Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом. Далее, приступаем к травлению. Можно купить хлорное железо, но после него плохо отмывается раковина. Если случайно капните на одежду, останутся пятна, которые невозможно до конца вывести. Поэтому будем использовать безопасный и дешёвый метод. Подготовьте пластиковую ёмкость для раствора. Влейте перекись водорода 100 мл. Добавьте пол столовой ложки соли и пакетик лимонной кислоты до 50 г. Раствор делается без воды. С пропорциями можно экспериментировать. И всегда делайте свежий раствор. Медь должна вся стравиться. На это уходит около часа. Промойте плату под струёй колодной воды. Просверлите отверстия.

Можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.

Протрите плату спирто - канифольным флюсом или обычным раствором канифоли в изопропиловом спирте. Возьмите немного припоя и залудите дорожки.

Монтаж электронных компонентов (с фото)

Подготовьте всё, что пригодится для монтажа платы:

  1. Катушка с припоем.
  2. Штырьки в плату.
  3. Симистор bta16.
  4. Конденсатор на 100 нФ.
  5. Постоянный резистор на 2 кОм.
  6. Динистор db3.
  7. Переменный резистор с линейной зависимостью на 500 кОм.

Откусите четыре штырька и впаяйте их в плату. Потом установите динистор и все остальные детали, кроме переменного резистора. Симистор припаивайте последним. Возьмите иглу и щёточку. Почистьте промежутки между дорожками, чтобы убрать возможное замыкание. Симистор свободным концом с отверстием крепится на алюминиевый радиатор для охлаждения. Мелкой наждачной бумагой зачистьте область крепления элемента. Возьмите теплопроводящую пасту марки КПТ-8 и нанесите небольшое количество пасты на радиатор. Закрепите симистор винтом и гайкой. Так как все детали нашей конструкции находятся под напряжением сети, для регулировки будем применять ручку из изолирующего материала. Оденьте её на переменный резистор. Кусочком провода соедините крайний и средний выводы резистора. Теперь к крайним выводам припаяйте два провода. Противоположные концы проводов припаяйте к соответствующим выводам на плате.

Можно весь монтаж сделать навесным. Для этого припаиваем детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов. Здесь тоже нужен радиатор для симистора. Его можно сделать из небольшого куска алюминия. Такой регулятор займёт очень мало места и его можно будет разместить в корпусе болгарки.

Если захотите установить светодиодный индикатор в регулятор оборотов, то используйте другую схему.

Схема регулятора со светодиодным индикатором.

Здесь добавлены диоды:

  • VD 1 - диод 1N4148;
  • VD 2 - светодиод (индикация работы).

Регулятор со светодиодом в собранном виде.

Этот блок рассчитан для маломощных болгарок, поэтому симистор не установлен на радиатор. Но если вы будете использовать его в мощном инструменте, то не забудьте про алюминиевую плату для теплоотдачи и симистор bta16.

Изготовление регулятора мощности: видео

Испытание электронного блока

Перед подключением блока к инструменту испытаем его. Возьмите накладную розетку. Вмонтируйте в неё два провода. Один из них подключите к плате, а второй к сетевому кабелю. У кабеля остался ещё один провод. Его подключите к сетевой плате. Получается, что регулятор включён последовательно в цепь питания нагрузки. Подключите к цепи лампу и проверьте работу прибора.

Тестирование регулятора мощности тестером и лампой (видео)

Подключение регулятора к болгарке

Регулятор оборотов подключается к инструменту последовательно.

Схема подключения указана ниже.

Если в рукоятке болгарки есть свободное место, то туда можно поместить наш блок. Схема, собранная навесным монтажом, приклеивается эпоксидной смолой, которая служит изолятором и защитой от тряски. Переменный резистор с пластмассовой ручкой выведите наружу, чтобы регулировать обороты.

Установка регулятора внутрь корпуса углошлифовальной машины: видео

Электронный блок, собранный отдельно от болгарки, помещается корпус из изоляционного материала, так как все элементы находятся под напряжением сети. К корпусу прикручивается переносная розетка с сетевым кабелем. Наружу выводится ручка переменного резистора.

Регулятор включается в сеть, а инструмент в переносную розетку.

Регулятор оборотов для болгарки в отдельном корпусе: видео

Использование

Существует ряд рекомендаций для правильного использования болгарки с электронным блоком. При запуске инструмента дайте ему разогнаться до установленных оборотов, не спешите резать что-либо. После выключения повторно запускайте его через несколько секунд, чтобы успели разрядиться конденсаторы в схеме, тогда повторный пуск будет плавным. Регулировать скорость можно во время работы болгарки, медленно поворачивая ручку переменного резистора.

Болгарка без регулятора оборотов хороша тем, что без серьёзных затрат вы можете сами сделать универсальный регулятор оборотов для любого электроинструмента. Электронный блок, вмонтированный в отдельную коробку, а не в корпус шлифовальной машины, можно использовать для дрели, бормашины, циркулярной пилы. Для любого инструмента с коллекторным двигателем. Конечно, удобнее, когда ручка регулятора находится на инструменте, и не нужно никуда отходить и наклоняться, чтобы её повернуть. Но тут уже вам решать. Это дело вкуса.

(УШМ), в простонародье болгарок, имеют регулятор оборотов.

Регулятор оборотов расположен на корпусе УШМ

Рассмотрение различных регулировок нужно начать с анализа электрической схемы болгарки.

простейшее представление электросхемы шлифовальной машины

Более продвинутые модели автоматически поддерживают скорость вращения вне зависимости от нагрузки, но чаще встречаются инструменты с ручной диска. Если на дрели или электрическом шуруповерте используется регулятор куркового типа, то на УШМ такой принцип регулирование невозможен. Во-первых – особенности инструмента предполагают другой хват при работе. Во-вторых – регулировка во время работы недопустима, поэтому значение оборотов выставляется при выключенном моторе.

Для чего вообще регулировать скорость вращения диска болгарки?

  1. При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска.
    Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска;
  2. Резка и раскрой камня и кафеля на высокой скорости может быть опасной.
    К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах;
  3. Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения.
    Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления;
  4. Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора.
    Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально;
  5. Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
  6. При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя.
    Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности - выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом. Так различаются коллекторные двигатели параллельного и последовательного возбуждения. Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный , обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере. Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Принцип регулирования с микросхемами на постоянном токе — это конечно . Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется. Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.

Андрей Повный