Тест систем автоматической калибровки под особенности помещения (Room EQ). Принципы корректирования АЧХ

Что же нам может дать цифровая обработка в акустических системах? Во-первых, хочу сразу оговорить, что не существует волшебной платы, установив которую в недорогую систему, получим волшебный звук. Акустические проблемы колонки должны лечиться акустическим путем. Например, нельзя устранить цифровой обработкой проблемы, связанные с резонансами корпуса акустической системы, стоячими звуковыми волны внутри корпуса, органные резонансами трубы фазоинвертора. В первую очередь нужна правильно спроектированная акустическая система с хорошо подобранными компонентами. Но все же некоторые параметры поддаются коррекции с помощью цифровой обработки звука. Рассмотрим результаты на живом примере.

В качестве подопытного кролика используем систему CL3212 производства фирмы PARK AUDIO. Система представляет собой громкоговоритель состоящий из 12” головки 12CL76 и 1” драйвера DE250 производства итальянской фирмы B&C Speakers(Италия). Для начала рассмотрим работу пассивной системы. Пассивная система – это система, не имеющая встроенного усилителя и использующая для разделения частотного спектра на полосы пассивный кроссовер. В системе CL3212 для низкочастотного динамика использован фильтр 2-го порядка с крутизной спада 12 дБ/октаву а для высокочастотного динамика — фильтр 3-го порядка с крутизной спада 18 дБ/октаву.


Рис.1 Теперь проведем измерения акустической АЧХ на расстоянии 1 метр от колонки


Рис.2 АЧХ пассивной системы CL3212, измерена на расстоянии 1 метр, подводимая мощность – 1Вт

Мы видим, что в то время, как АЧХ системы достаточно линейна, фазовая характеристика этим похвастаться не может. Возможности пассивного фильтра ограничены. В частности довольно сложно с его помощью совместить акустические центры головок. Для этого требуется вводить задержку электрического сигнала, подаваемого на одну из головок, а в пассивном фильтре это сложно реализовать. Можно попытаться откорректировать АЧХ пассивной системы с помощью параметрической эквализации.


Рис.3 АЧХ эквализированной пассивной системы CL3212, измерена на расстоянии 1 метр, подводимая мощность – 1Вт

Зеленый – суммарная АЧХ системы Красный – фазочастотная характеристика

Как мы видим, АЧХ системы стала более линейной, но ФЧХ выровнять не удалось. Современные методы цифровой обработки сигналов позволяют решить эту проблему. Предварительно хотелось бы немножко рассказать о теоретических основах. В описаниях акустических систем или звуковых процессоров периодически встречается термин – FIR фильтрация.

Что это такое? Вкратце рассмотрим разницу между двумя классами фильтров, применяемыми в обработке звука: IIR фильтры От Infinite Impulse Response, на русском – фильтры с бесконечной импульсной характеристикой. Это цифровая реализация привычных нам аналоговых фильтров. Описываются они привычными нам терминами: фильтр верхних частот Батерворта 4-го порядка (крутизна спада 24 дБ/октаву), частота среза 1500 Гц. Также к этому типу фильтров относятся параметрические корректоры АЧХ (привычные нам эквалайзеры). Они обычно описываются параметрами: частота настройки, уровень подъема/спада и ширина полосы или добротность). Такие фильтры просты в реализации. Они являются так называемыми минимально-фазовыми фильтрами. Это означает, что любое изменение АЧХ неизбежно меняет фазовые соотношения в сигнале. Чем выше крутизна среза фильтра или добротность полосового фильтра – тем больше получаем сдвиг фаз на частоте среза.

FIR фильтры От Finite Impulse Response, на русском – фильтры с конечной импульсной характеристикой. В аналоговом виде такие фильтры реализовать невозможно. Главным достоинством FIR фильтров является то, что они позволяют корректировать АЧХ сигнала, не влияя на его фазу. С ними мы можем использовать разделительные фильтры, не вносящие сдвига фаз на частоте перегиба и использовать эквализацию, не вносящую фазовых сдвигов на корректируемых частотах. В общем можно сказать так: эти фильтры делают именно то, что должны делать, и ничего более. Но, к сожалению, не обходится и без недостатков. FIR фильтры вносят задержку в обрабатываемый сигнал, причем, чем более низкочастотный сигнал нам нужно обработать, тем большую временную задержку внесет наш фильтр. Если для бытовых систем, которые обычно работают самостоятельно, можно позволить довольно большие величины задержки, то в профессиональной акустической системе, которая практически всегда работает совместно с другими системами (например с сабвуферами) задержки более 2 мсек недопустимы. Поэтому частотный диапазон обработки FIR фильтров обычно ограничивается средними и высокими частотами. Для коррекции низкочастотного диапазона используют традиционные IIR фильтры. Давайте посмотрим, какой станет наша система после разделения полос и коррекции АЧХ с помощью FIR фильтров. Настроим эту же систему в активной Bi-Amp конфигурации. Каждая из головок подключена к своему каналу усиления, а разделительные фильтры и коррекция АЧХ реализованы с помощью процессора (DSP), входящего в состав усилительного модуля DX700DSP.


Рис.4 АЧХ системы CL3212, раздельные усилители НЧ и ВЧ, обработка с использованием FIR фильтрации. Измерена на расстоянии 1 метр, подводимая мощность – 1Вт

Зеленый – суммарная АЧХ системы Красный – фазочастотная характеристика

Как мы видим, АЧХ системы превратилась практически в прямую линию, фазочастотная характеристика в области средних частот также стала практически прямой линей. В области низких частот выровнять фазу не удается, т.к. вследствие больших задержек обработки на низких частотах нельзя использовать FIR фильтрацию Теперь попытаемся понять, как влияет линейность фазовой характеристики на воспроизведение звука акустикой. Для тестирования используем в качестве тестового сигнала меандр (прямоугольные импульсы). «Идеальный» меандр представляет собой сумму бесконечного числа синусоид, каждая из которых имеет свою амплитуду и фазу. Поэтому при прохождении меандра через аудиосистему можно выявить проблемы в временной области. Все синусоидальные компоненты должны быть переданы системой без искажений времени прихода для того, чтобы получить на выходе опять прямоугольную волну. Важно осознавать, что задержка по времени системы не должна быть равна нулю. Но она должна быть одинаковой для всех частот в пределах полосы пропускания системы. Такое условие будет легко выполняться, если тестируемая система имеет ровную фазовую характеристику. Даже притом, что никто не слушает меандр через акустические системы, он представляет собой четкий тестовый сигнал, глядя на который очень легко увидеть временные искажения сигнала, проходящего через громкоговоритель. Амплитудные или временные искажения сразу видны и это помогает понять причины искажений. Итак, попробуем пропустить прямоугольный сигнал через нашу систему с пассивным фильтром:


Рис. 5 Меандр на выходе CL3212 с пассивным фильтром

На фронтах полученных импульсов видна неидеальная временная стыковка сигналов от НЧ и ВЧ головок, а на плоской части – неравномерность, вызванная неравномерностью АЧХ системы. Это дает нам два ключа для улучшения формы выходного сигнала: — сгладить частотную характеристику. — улучшить временную стыковку динамиков между собой (это даст, в том числе, выравнивание фазовой характеристики системы). Теперь проведем аналогичное измерение для активной системы с FIR фильтрацией.


Рис. 6 Меандр на выходе CL3212 с раздельными усилителями НЧ и ВЧ, обработка с использованием FIR фильтрации.

Мы видим, что исчезли все временныенестыковки на фронтах сигнала, плоская часть импульса стала совершенно ровной. Переходные характеристики системы ощутимо улучшились. Это благоприятно скажется на четкости и прозрачности воспроизведения звука акустической системой. Система также станет более предсказуемой при попытках ее дополнительной эквализации в конкретных акустических условиях. Многочисленные прослушивания подтвердили эти результаты.

При записи грампластинок для повышения отноше-ния сигнал/шум предусматривается подъем высоких час-тот. Да и сам электромагнитный звукосниматель, как отмечалось, дает почти линейный рост ЭДС с частотой, начиная от самых низких частот. В силу этого для работы с электромагнитными звукоснимателями нужно применение усилителей-корректоров с нормированной АЧХ. Коррекции подлежат два участка частотного диапазона. В диапазоне частот от 50 до 500 Гц усиление должно падать с крутизной 20 дБ/декаду. В диапазоне от 500 до 2000 Гц оно остается постоянным,а начиная с частоты 2,12 кГц вновь должно линейно падать. Кривая АЧХ является обратной кривой зависимо-сти колебательной скорости резца при записи, которая нормируется по международным нормам.

Итак, на АЧХ заметны три характерные частоты, задающие ее вид: 50, 500 и 2120 Гц. Им соответствуют постоянные времени 3180, 318 и 75 мкс. Они позволяют рассчитать корректирующие RC-цепочки в схеме усилите-ля-корректора. Эти цепи могут быть выполнены в виде пассивных цепей коррекции или в виде элементов коррек-ции, включенных в цепь отрицательной обратной связи.

Необходимость введения коррекции усложняет схему усилителя. Обычно применяется специальный корректи-рующий усилитель, дотягивающий сигнал с выхода звуко-снимателя до типичного для остальных источников сигна-лов уровня порядка 0,15—0,3 В. Разумеется, учитывая малый уровень выходного напряжения современных зву-коснимателей, усилитель должен быть с предельно малым уровнем собственных шумов и наводок. Любители считают высшим шиком ламповый корректирующий усилитель, хотя получение от него малого уровня шумов более чем проблематично.

Аббревиатура RIAA, хотя и принадлежит Американской ассоциации звукозаписывающей индустрии, начиная с 1954 года она фактически ассоциируется во всем мире со стандартом коррекции частотных характеристик долгоиграющих виниловыхгрампластинок в противовес существовавшим многочисленным стандартам для старых патефонных пластинок, которые были рассчитаны на скорость вращения 78 оборотов в минуту. Хотя в Европе и не приветствовалось введение стандарта, разработанного Американской ассоциации звукозаписывающей индустрией (стандарта RIAA), но введение общего международного стандарта все-таки становилось велением времени. Международная электротехническая комиссия, МЭК, (IEC), ввела стандарт частотной коррекции для долгоиграющих виниловых грампластинок, который оказался практически идентичным американскому стандарту. Единственное отличие заключалось в том, что стандарт МЭК рекомендует производить срез нижних звуковых частот в режиме воспроизведения грамзаписи, причем, с целью уменьшения НЧ рокота (так называемого рокот-эффекта, вызываемого биением частоты вращения диска), рекомендуется вводить ослабление с уровнем -3 дБ на частоте 20 Гц (при переводе во временные характеристики это соответствует постоянной времени 7950 мкс). Большая часть производителей высококачественных предусилителей посчитала, что их оборудование будет укомплектовано электропроигрывателями высокого качества, поэтому проблема рокота их не будет касаться, в силу чего требования МЭК ими были проигнорированы. Следовательно, используемый ими стандарт выравнивания частотных характеристик грампластинок фактически являлся стандартом RIAA.
Тем ни менее, на производителей аппаратуры до сих пор зачастую оказывается сильное давление на предмет изменения параметров проигрывателей, соответствующих стандарту RIAA вводя коррекцию амплитудно-частотной характеристики в области низких частот.

Такая политика определяется тем, что:

  • часть ламповых усилителей мощности оказывается чувствительной к насыщению магнитного сердечника выходного трансформатора в случаях, когда на низких частотах (менее 50 Гц) поступает сигнал большой амплитуды (в том числе и от рокот-эффекта);
  • НЧ громкоговорители отражательного типа очень легко перегружаются при частотах, ниже частот их акустического среза из-за слишком малого демпфирования, вызываемого движением диффузора. Для громкоговорителей отражательного типа, установленных на отражательных досках, характерна частота среза чуть ниже 100 Гц, тогда как для свободно стоящих отражательных громкоговорителей нижняя граница сдвигается до 50 Гц, или даже еще ниже;
  • записи на долгоиграющих виниловых грампластинках характеризуются низкочастотным (менее 20 Гц) шумом из-за деформаций и вибраций диска проигрывателя.

Таким образом, из вышесказанного следует, что все эти проблемы могли бы быть сняты введением низкочастотной коррекции в каскаде воспроизведения аппаратуры, соответствующего стандартам RIAA.
Одним из возможных позитивных подходов к этой проблеме является возможное принятие рекомендаций МЭК относительно постоянной времени 7950 мкс, но более разумным решением было бы введение соответствующим образом рассчитанного фильтра высоких частот, имеющего на краю диапазона ослабление порядка 12 дБ на октаву, или же еще большее значение, с резонансной частотой порядка 10 Гц (так называемые резонансные рокот-фильтры для подавления НЧ шумов, определяемых несовершенством механической части проигрывателя). Плеер компакт-дисков как-то не выявил необходимости введения фильтра нижних частот с резонансной частотой 10 Гц для решения проблем, связанных с плохо сконструированными громкоговорителями или с вызывающими вопросы выходными трансформаторами. Но тогда сразу же возникает вопрос, а причем же здесь виниловые долгоиграющие грампластинки? Коробление и рокот являются в чистом виде проблемами механической части, и, следовательно, должны решаться чисто в этих рамках, а не с использованием электрических ухищрений.

Впрактических схемах операционный усилитель охватывается отрицательной обратной связью (ООС). Вследствие сдвига фаз между входным и выходным сигналом ОУ (с увеличением частоты в многокаскадном усилителе этот сдвиг фаз увеличивается) на некоторых частотах обратная связь может стать положительной. Если на этих частотах коэффициент усиления усилителя больше единицы, то на выходе схемы возникают автоколебания. Для исключения возникновения этих колебаний (самовозбуждения ОУ) используются цепи частотной коррекции.

Рассмотрим усилитель, охваченный ООС по напряжению (рис. 8.7). Положим, что в схеме используется трехкаскадный ОУ. Определим его коэффициент усиления. Будем считать передаточную характеристику ОУ идеальной, т. е. U вых о U вх . Тогда

где - коэффициент (глубина) обратной связи. Отсюда:

.

Здесь К=К 0 /(1+ К 0 ) - коэффициент усиления усилителя с замкнутой петлей ООС. Если значение Ко велико, то

и
,

т. е. Практически не зависит от коэффициента усиления ОУ.

Обратимся теперь к рис. 8.7, б, в. На оси частот отмечена частота f пр , на которой сдвиг фаз между выходным и входным сигналом достигает 180°. Нетрудно теперь из графика определить наличие условий возбуждения в схеме. Если линия К*= 1/ пересекает АЧХ в точке, соответствующей частоте, большей f пр , то в схеме будут возникать ложные колебания. В этом случае сдвиг фаз по цепи обратной связи достигает величины, большей 360°. Следовательно, глубина отрицательной обратной связи усилителя ограничивается условием устойчивости ОУ. На рис. 8.7, б указаны пределы изменения возможного коэффициента усиления усилителя, при которых ОУ не возбуждается (область1).

Наиболее часто используемое на практике требование обеспечения устойчивости схемы, соответствующее максимально возможному запасу фазы в петле ООС (при принятой аппроксимации фазы на частоте f ср2 - 90°, в действительности 45°), заключается в следующем: прямая К*= 1/ (дБ) должна пересекать отрезок АЧХ с наклоном в 20 дБ/дек. В ряде случаев может оказаться достаточным и меньший запас по фазе на самовозбуждение, поэтому в усилителях с ООС удается использовать часть участка с наклоном 40 дБ/дек.

Е
сли требуется реализовать усилитель с ООС, для которого не удовлетворяется сформулированный критерий устойчивости, то в ОУ необходимо ввести цепи частотной коррекции. Последние должны в простейшем случае изменить АЧХ ОУ так, чтобы удовлетворялся критерий устойчивости для требуемогоК* . Если цепи коррекции выбраны таким образом, что наклон результирующей АЧХ ОУ составляет 20 дБ/дек и она проходит через точку частоты единичного усиления f T , то усилитель имеет полностью скорректированную частотную характеристику, которую называют оптимальной.

Рассмотрим некоторые цепи коррекции. Широкое распространение получила корректирующая цепочка дифференцирующего типа (коррекция на опережение по фазе) (рис. 8.8). Особенность АЧХ этой цепи - ее подъем в диапазоне частот от f 4 до f 5 со скоростью 20 дБ/дек.

Роль R1 обычно выполняет одно из внутренних сопротивлений ОУ. Часто и R1 реализуется внутри ОУ. Поэтому коррекция такого типа сводится лишь к подключению конденсатора С1 (иногда и R2 ) к соответствующим выводам.

Корректирующая цепочка интегрирующего тип
а (коррекция на отставание по фазе) приведена на рис. 8.9. АЧХ этой цепи по Боде в диапазоне частот отf 6 до f 7 падает со скоростью -20 дБ/дек. Роль сопротивления R3 играет, как правило, выходное сопротивление корректирующего каскада. Поэтому коррекция интегрирующего типа на практике сводится к подключению цепи R4С2.

К
ак же используются рассмотренные цепочки для коррекции двухкаскадных усилителей? На рис. 8.10 приведена исходная АЧХ двухкаскадного усилителя, частотные характеристики (кривые1 , 2 , 8 ) используемых корректирующих цепочек (для них К< 0) и соответствующие скорректированные АЧХ (кривые 1, 2, 3). Из рисунка видно, что корректирующая цепочка дифференцирующего типа позволяет выполнить как частичную, так и оптимальную коррекцию АЧХ, при которой спад АЧХ во всей полосе частот ОУ составляет - 20 дБ/дек (кривая 2 на рис. 8.10, б ).

На практике для коррекции АЧХ ОУ применяется и ряд других цепочек. Важно отметить, что для каждого конкретного усилителя в справочных пособиях рекомендуется свой набор RС-цепочек, подключаемых к специальным выводам (высокоомным точкам схемы). Эти точки выбираются с таким расчетом, чтобы номиналы элементов цепи коррекции оказались небольшими. АЧХ современных двухкаскадных усилителей корректируются с помощью одной внешней цепи коррекции, трехкаскадных - как правило, с помощью двух цепей.

Ряд ОУ имеет встроенные цепи частотной коррекции, реализованные чаще всего на основе МОП-конденсаторов, формируемых в кристалле одновременно с другими элементами усилителя. Такие усилители сохраняют устойчивость независимо от величины обратной связи, что является их несомненным достоинством. (Упрощается проектирование схем на их основе). Однако ОУ с внутренней коррекцией имеют ограниченную полосу пропускания и, следовательно, не позволяют в полной мере использовать динамические свойства усилителя для К* >>1 (в них частотная коррекция выполнена для наихудшего случая, т.е. для К*= 1).

Так как операционный усилитель представляет собой многокаскадный усилитель с очень большим коэффициентом усиления, то вероятность его самовозбуждения при введении отрицательной обратной связи весьма велика. Поэтому для обеспечения устойчивости ОУ необходимо принимать специальные меры. Устойчивость ОУ оценивают с помощью логарифмических амплитудно-частотной (АЧХ) и фазочастотной (ФЧХ) характеристик.

При построении АЧХ обычно используют логарифмический асштаб по обеим осям координат, т. е. коэффициент усиления Ыражается в децибелах. Используя формулы (4.42), (4.46) и полагая, что 2, легко построить АЧХ и ФЧХ для одного каскада. Для удобства анализа характеристики аппроксимируют в виде прямых (рис. 6.15).

АЧХ представляет собой горизонтальную линию на уровне . На частоте среза излом и при АЧХ представляет собой прямую с наклоном 20 дБ при изменении частоты в 10 раз, т. е. 20 дБ на декаду. Таким образом, скорость спада АЧХ, построенная для одного каскада при , равна .

Если оценивать скорость спада АЧХ с помощью октавы (из-менения частоты в два раза), то можно считать, что скорость спада АЧХ однокаскадного усилителя составляет (рис. 6.15, а).

Частота среза, соответствующая излому аппроксимированной АЧХ, приблизительно равна граничной частоте усиления в реальной АЧХ. Максимальная погрешность их равенства при аппроксимации АЧХ составляет 3 дБ.

Построенную с помощью выражения (4.46) ФЧХ (рис. ) также можно аппроксимировать в виде прямой, проведенной от точки до точки , в которой 90°. На частотах ФЧХ представляется горизонтальной прямой на уровне . При такой идеализации отклонение от реальной ФЧХ составляет не больше 5,7°.

Амплитудно-частотная характеристика многокаскадного усилителя строится путем суммирования АЧХ отдельных его каскадов и имеет несколько изломов, число которых соответствует количеству каскадов.

На рис. 6.16, а приведена АЧХ трехкаскадного усилителя, построенная путем суммирования АЧХ каскадов с частотами среза и коэффициентами усиления в области низких частот .

Фазочастотная характеристика многокаскадного усилителя (рис. 6.16, б) строится путем суммирования фазовых характеристик отдельных каскадов с построенной выше АЧХ.

Из рис. 6.16, а видно, что в диапазоне частот от до скорость спада АЧХ составляет , от до , а на участке от до сот - 60 дБ ( - частота единичного усиления).

Таким образом, каждый каскад увеличивает скорость спада АЧХ на .

Фазовый сдвиг на частоте составляет -45°, на частоте - 135° и на частоте - 225° (рис. 6.16, б).

При введении отрицательной обратной связи угол сдвига между выходным и входным напряжениями усилителя должен составлять 180°, если четырехполюсник обратной связи не имеет реактивных элементов, т. е. [см. формулу (2.34)].

При положительной обратной связи с учетом имеем .

Таким образом, чтобы за счет реактивных элементов усилителя отрицательная обратная связь стала положительной, дополнительный фазовый сдвиг должен составлять 180°.

Для обеспечения запаса устойчивости усилителя по фазе принимаем, что сдвиг нйне должен превышать 135°. Тогда можно считать, что область устойчивости работы многокаскадного усилителя, в частности ОУ, при введении отрицательной обратной связи определяется участком АЧХ со спадом , так как на частоте фазовый сдвиг составляет 135°.

При глубокой отрицательной обратной связи .

На рис. 6.16, а , выраженный в децибелах, может быть представлен прямыми 2 и 3, отражающими различную глубину обратной связи. В точках пересечения этих прямых с АЧХ усилителя без обратной связи А и Б имеем , т. е. именно в этих точках выполняется другое условие самовозбуждения усилителя

Таким образом, на частотах усилитель не самовозбуждается, так как, несмотря на выполнение условия (6.22), обеспечивается достаточный запас устойчивости по фазе. На частотах усилитель работает неустойчиво, так как могут выполняться оба условия самовозбуждения усилителя (6.22) и (2.34).

Для повышения устойчивости ОУ при введении глубокой отрицательной обратной связи проводится частотная коррекция АЧХ с помощью пассивных -цепей, включаемых в схему операционного усилителя. Корректирующие цепи изменяют АЧХ таким образом, что ее спад на всех частотах составляет (рис. 6.16, а). Наиболее просто осуществить коррекцию АЧХ, включив в схему ОУ конденсатор достаточно большой емкости так, чтобы постоянная времени корректирующей цепи превышала . Тогда АЧХ усилителя сдвинется влево, и точка, соответствующая ее частоте среза , будет определяться уже величиной емкости , а спад АЧХ составляет в диапазоне частот . Если частота больше частоты единичного усиления сот кор скорректированной АЧХ, то усилитель будет устойчив при любой глубине обратной связи во всем диапазоне рабочих частот от 0 до . Недостаток такого способа коррекции состоит в том, что, обеспечив устойчивость усилителя, мы ограничим его полосу пропускания.

В настоящее время нашей промышленностью выпускаются ОУ общего применения, при разработке принципиальных схем которых учтено использование корректирующего конденсатора . ОУ, называемые усилителями с внутренней коррекцией, не требуют дополнительных корректирующих элементов и устойчивы любой глубине обратной связи во всем диапазоне рабочих Однако узкая полоса пропускания ограничивает применение с внутренней коррекцией.

Если необходимо усиливать сигналы высокой частоты, то используют ОУ с внешней коррекцией, когда усилитель имеет дополнительные внешние выводы для подключения корректирующих цепей.

Эти выводы позволяют выбрать оптимальную коррекцию АЧХ усилителя путем подключения к выводам коррекции навесных конденсаторов или -цепей. В спецификациях изготовителей ОУ обычно приводятся инструкции по применению цепей внешней коррекции.

Мы научились рассчитывать акустическое оформление с фазоинвертором и начали экспериментально определять зависимость полного электрического сопротивления динамических головок от частоты. Сегодня мы попробуем осмыслить результаты измерений, после чего рассмотрим способы амплитудной и частотной коррекции излучателей.

Если вы обнаружите минимумы импеданса около 3 Ом, не расстраивайтесь. Некоторые модели АС известных фирм имеют провалы до 2,6 Ом, а иногда даже до 2 Ом! Ничего хорошего в этом, конечно, нет - усилители перегреваются, работая на такую нагрузку, особенно на большой громкости, растут искажения.

Для ламповых триодных усилителей особенно опасны минимумы в области низких частот и нижней середины. Если импеданс здесь падает ниже 3 Ом, возможен выход из строя оконечных ламп, а вот пентоды этого не боятся.

Важно помнить, что выходное сопротивление усилителя участвует в настройке фильтра АС. Например, если сделать подъем на 1 дБ области Fc, подключив АС к транзисторному усилителю почти с нулевым выходным сопротивлением, то при работе с ламповым (типовое значение Rвых = 2 Ом) от форсажа не останется и следа. Да и вся АЧХ будет другой. Чтобы получить те же результаты, придётся создать другой фильтр.

Слушатель, не останавливающийся в развитии, со временем приходит к пониманию ценности хороших ламповых усилителей. По этой причине я обычно настраиваю акустику с ламповым оконечником, а при подключении к транзисторному ставлю последовательно с АС 10-ваттный безындукционный (не более 4 - 8 mН) резистор сопротивлением 2 Ом.

Если имея транзисторный усилитель, вы не исключаете возможность приобретения в будущем лампового, то при настройке и последующей эксплуатации подключайте ваши АС через такие резисторы. При переходе на лампы не потребуется настраивать АС заново, достаточно лишь удалить резисторы.

При отсутствии генератора подойдет тестовый CD с записью испытательных сигналов для оценки АЧХ. При этом вы не сможете плавно менять частоту и, скорее всего, пропустите самый минимум импеданса. Тем не менее, даже приблизительная оценка модуля Z будет полезна, причем для этого псевдошумовые сигналы в третьоктавных полосах даже удобнее, чем синусоидальные. Такие сигналы есть на тестовом CD журнала «Салон AV» (№7/2002). В крайнем случае, можно обойтись без измерений импеданса, если ограничить форсаж отдачи на частоте среза фильтра величиной 1 дБ. При этом импеданс вряд ли упадёт более чем на 20%. Например, для 4-омной АС это соответствует минимуму в 3,2 Ом, что допустимо.

Учтите, что «поймать» параметры элементов фильтра, необходимые для коррекции АЧХ, вам придётся самостоятельно. Предварительный расчёт нужен, чтобы изначально не промахнуться «на километр». В простой фильтр НЧ/СЧ-головки добавляются резисторы для некоторых манипуляций с АЧХ, которые могут потребоваться при настройке ваших АС. Если средний уровень звукового давления этого динамика выше соответствующего параметра ВЧ-головки, необходимо включить последовательно с динамиком резистор.

Варианты включения - на рис. 6 а) и б).

Величину необходимого снижения отдачи НЧ/СЧ-головки, выраженную в дБ, обозначим N. Тогда:

где Rд - среднее значение импеданса динамика.

Вместо расчётов можно воспользоваться таблицей 1.

Таблица 1

1 дБ - = 10%, или изменение уровня в 1,1 раза.

2 дБ - = 25% - » - в 1,25 раза.

3 дБ - = 40% - » - 1,4 раза.

4 дБ - = 60% - » - 1,6 раза.

5 дБ - = 80% - » - 1,8 раза.

6 дБ - = 100% - » - 2 раза.

где Vус - действующее значение напряжения на выходе усилителя. Vд - то же, на динамике. Vд меньше, чем Vс, благодаря ослаблению сигнала резистором R1. Кроме того, N = Nвч — Nнч, где Nнч и Nвч - уровень звукового давления, развиваемый, соответственно, НЧ и ВЧ-головками.

Эти уровни - усреднённые по полосам, воспроизводимым НЧ и ВЧ-головками. Естественно, Nнч и Nвч измеряются в дБ.

Пример быстрой оценки необходимой величины R1:

Для N = 1 дБ; R1 = Rд (1,1 — 1) = 0,1 Rд.

Для N = 2 дБ; R1 = Rд (1,25 — 1) = 0,25 Rд.

Для N = 6 дБ; R1 = Rд (2 — 1) = Rд.

Более конкретный пример:

Rд = 8 Ом, N = 4 дБ.

R1 = 8 Ом (1,6 — 1) = 4,8 Ом.

Пусть Рд - паспортная мощность НЧ/СЧ-громкоговорителя, PR1 - допустимая мощность, рассеиваемая R1.

Не следует затруднять отвод тепла от R1, то есть не надо обматывать его изолентой, заливать термоклеем и т.п.

Особенности предварительного расчёта фильтра с R1.

Для схемы на рис. 6 б) значения L1 и C1 рассчитываются на воображаемый динамик, суммарное сопротивление которого: RS= R1 + Rд.

При этом L1 получается больше, а C1 - меньше, чем у фильтра без R1.

Для схемы на рис. 6 а) - всё наоборот: введение в схему R1 требует уменьшения L1 и увеличения С1. Проще рассчитывать фильтр по схеме на рис. 6 б). Пользуйтесь именно этой схемой.

Дополнительная коррекция АЧХ при помощи резистора.

Если для улучшения равномерности АЧХ необходимо уменьшить подавление фильтром сигналов выше частоты среза, можно применить схему, приведённую на рис. 7

R2 в этом случае дает уменьшение отдачи в Fс. Выше Fc отдача, напротив, растёт по сравнению с фильтром без R2. Если необходимо восстановить близкую к исходной АЧХ (измеренной без R2), следует уменьшить L1 и увеличить C1 в одинаковой пропорции. На практике диапазон R2 находится в пределах:

R2 = (0,1Е1) і Rд.

Коррекция АЧХ

Простейший случай. На достаточно равномерной характеристике имеется зона завышенной отдачи («презенс») в области средних частот. Можно применить корректор в виде резонансного контура (рис. 8).

На частоте резонанса

Контур имеет некоторое значение импеданса, в соответствии с величиной которого сигнал на динамике ослабляется.

Вне частоты резонанса ослабление уменьшается, таким образом, контур может избирательно подавлять «презенс».

Удобно воспользоваться таблицей 1a:

Изм. уровня в дБ 1 2 3 4 5 6 7 8 9 10 11 12
Относит. изм. уровня (D ) 1,1 1,25 1,4 1,6 1,8 2 2,2 2,5 2,8 3,16 3,55 4

Пример: необходимо подавить «презенс» с центральной частотой 1600 Гц. Импеданс громкоговорителя - 8 Ом. Степень подавления: 4 дБ.

Конкретная форма АЧХ громкоговорителя может потребовать более сложной коррекции.

Примеры - на рис. 9.

Случай на рис. 9 а) - самый простой. Легко подобрать параметры корректирующего контура, так как «презенс» имеет форму «зеркальную» возможной характеристике фильтра.

На рис. 9 б) показан другой возможный вариант. Видно, что простейший контур позволяет «разменять» один большой «горб» на два маленьких с небольшим провалом АЧХ в придачу.

В таких случаях нужно сначала увеличить L2 и уменьшить С2. Это расширит полосу подавления до нужных пределов. Затем следует зашунтировать контур резистором R3, как показано на рис. 10. величина R3 выбирается исходя из необходимой степени подавления сигнала, подаваемого на динамик в полосе, определяемой параметрами контура.

Рис.10

R3 = Rд (D — 1)

Пример: надо подавить сигнал на 2 дБ. Динамик - 8 Ом. Обращаться к Таблице 1.

R3 = 8 Ом (1,25 — 1) = 2 Ом.

Как в этом случае происходит коррекция, показано на рис. 9 в).

Для современных громкоговорителей характерно сочетание двух проблем: «презенс» в области 1000 - 2000 Гц и некоторый избыток верхней середины. Возможный вид АЧХ приведен на рис. 11 а).

Наиболее свободный от вредных «побочных» эффектов способ коррекции требует небольшого усложнения контура.

Корректор показан на рис. 12

Резонанс контура L2, С2 нужен, как обычно, для подавления «презенса». Ниже Fp сигнал почти без потерь проходит на динамик через L2. Выше Fp сигнал идёт через С2 и ослабляется резистором R4.

Оптимизируется корректор в несколько этапов. Так как введение R4 ослабляет резонанс контура L2, C2, то изначально следует выбрать L2 больше, а C2 меньше. Это обеспечит избыточное подавление на Fp, которое нормализуется после введения R4.

R3 = Rд (D — 1), где D - величина подавления сигналов выше Fp.

D выбирается в соответствии с избытком верхней середины, сверяясь с таблицей 1.

Этапы коррекции условно проиллюстрированы на рис. 11 б).

В редких случаях требуется обратное воздействие на наклон АЧХ при помощи корректирующей цепи. Ясно, что для этого R4 должен переместиться в цепь L2.

Схема - на рис. 13.

Проблемная АЧХ и её коррекция для этого случая показаны на рис. 14.

При определённом сочетании величин L2, C2 и R4 корректор может не иметь особенного подавления на Fp.

Пример, когда необходимо именно такая коррекция, - на рис. 15.

(Продолжение следует)