Тест светодиодной фары. Супертест светодиодных фар: десять машин с самой современной светотехникой Тест светодиодных фар

В Соединенных Штатах Америки Страховой институт дорожной безопасности (IIHS) провел испытания на предмет, качества освещения передней оптики. Тестирование передних фар и их испытание проходило в ночное время. Стоит здесь сразу отметить, что подобный тест на освещенность Институт проводил впервые. К большому разочаровнию, большинство этих новых автомобилей, что участвовали в испытаниях по освещенности , получили очень низкие оценки за их качество освещения, за исключением только одной модели автомобиля.

Так, по результатам этих ночных тестов положительные оценки за головное (переднее) освещение получил только автомобиль модели Toyota Prius V. Остальные автомашины по мнению специалистов IIHS имели недостаточно надежное качество передней оптики.

Так например, данный тест провалили десять марок автомобилей.

По своей сути, в результате этих испытаний IIHS составила первый в мире официальный рейтинг надежности и качества передних фар в машинах. Эти тесты реально показывают, на сколько тот или иной автомобиль . Это напрямую и конкретно влияет на саму безопасность машины. Кроме того, результаты этих исследований показывают не только качество освещения дороги для водителя, но и указывают, на сколько ближний свет фар доставляет дискомфорт водителям встречных автомобилей.

В конечном итоге Страховой институт дорожной безопасности (IIHS) традиционно, как и , проанализировал результаты испытаний и разделил все испытуемые машины на разные категории, присвоив им собственный рейтинг на основании полученных ими оценок.

Всего в тестах участвовал 31 автомобиль разных марок и различных комплектаций. Напомним нашим читателям, что многие модели машин поставляются на авторынок в разных своих комплектациях, а в зависимости от такой комплектации многие автопроизводители стараются оснащать автомобили разной оптикой, начиная от обычных галогеновых фар и заканчивая . Поэтому специалисты IIHS протестировали в рамках одной автомобильной марки несколько видов оптики, чтобы итоговые результаты по каждой модели были более справедливыми.

Для того, чтобы проверить автомобили, на своем полигоне попытался наилучшим образом воспроизвести условия вождения, которые могут происходить на реальной трассе в ночное время. Всего в испытаниях воссоздали искусственно 5 различных ситуаций на дороге.

Так например, по отдельности проводились замеры качества головного освещения при движении по прямой и при не резких ну и плавных поворотах налево и направо, а также при резких поворотах машины вправо или влево. Замеры производились с помощью специальных приборов. Специалисты института исследовали, как (низкий поток пучка света), так и дальний свет фар (высокий пучок света).

После проведения испытаний на полигоне в реальных ночных условиях, инженеры института проанализировали полученные данные, учитывая и дальность освещения, и возникающие впоследствии блики, для того, если свет фар ослеплял встречное направление.

Полученные данные после этого сравнивались с гипотетическими идеальными системами фар, которые по мнению специалистов должны стоять на современных автомобилях для обеспечения их максимальной безопасности на дороге.

В итоге такие хорошие оценки могли получить только те , которые достаточно качественно освещают большой участок дороги, но одновременно не ослепляют встречное направление движения.

На такие итоговые результаты больше всего влияли данные, полученные по качеству освещения ближнего света, так как этот вид освещения применяется водителями на дороге чаще всего. Данные по дальнему свету также анализировались, хотя на итоговый рейтинг этот показатель влиял не существенно.

В том числе, полученные результаты замеров при движении на прямой также учитывались инженерами больше всего, поскольку по той же статистике больше всего аварий происходит именно на прямых участках дороги.

В целом данное исследование показало, что многие автомобили, принимавшие участие в тестах, реально не имеют качественного головного освещения. Но самое удивительное здесь то, что хорошие результаты показали больше всего автомобили, которые были оснащены не модными светодиодными фарами, а имеющие .

Также специалисты отмечают, что многие автомобили, получившие приемлемые оценки за качество освещения, были оснащены оптикой которая поставляется только в качестве дополнительной опции, за которую нужно клиентам заплатить немаленькие деньги.



К большому сожалению, многие модели машин в стандартных своих комплектациях в наши дни оснащаются передней оптикой, которая ни как не может похвастаться качеством своего освещения.

В целом друзья надо признать, что результаты исследования современной автомобильной оптики просто шокируют. Да, всем конечно понятно, что за последние несколько лет автомобильная промышленность сделала огромный шаг вперед, внедрив новые светодиодные технологии в освещение современных автомобилей.

Но вот результаты IIHS показывают, что за хорошую оптику нужно отдавать лишние деньги в качестве доп.опции. По мнению представителя института IIHS это совсем неправильно, поскольку передние фары играют очень важную роль в безопасности всего автомобиля. Поэтому все автопроизводители должны производить не только в дорогих комплектациях, но и полностью во всех моделях автомобилей. Почему сегодня потребитель должен за свои деньги увеличивать безопасность автомобиля, приобретая новые фары в качестве дополнительного оборудования? Нам совсем не понятно.(?)

Почему были проведены тесты оптики?

Согласно мировой статистике по ДТП, 49% всех аварий в которых гибнут люди происходят в ночное время. Если брать все аварии в целом, то примерно 25% всех аварий в мире (в том числе и в США) также происходит в темное время суток.

Скорее всего, отныне институт дорожной безопасности США будет проводить такие тесты регулярно, ну и естественно проверит в ближайшие годы все автомобили представленные сегодня на рынке Америки.

Это будет и станет стимулом для всех автопроизводителей, будет точно также, как и с рейтингом по итогу краш-тестов. Возможно теперь данный IIHS будет ежегодно .

Зависит ли качество освещения передних фар от класса автомобиля?

Как нам удалось выяснить у IIHS, качество передней оптики не зависит от класса и стоимости машины. Например, в то время, как автомобиль Тойота Приус показал хорошие результаты качества дорожного освещения, такие модели как Cadillac ATS, Kia Optima и Mercedes-Benz C-Class получили для себя плохие оценки.

Правда эти отличные результаты модель авто Приус показала в максимальной своей комплектации, она была оснащена светодиодными фарами. В стандартной же комплектации автомобиль Приус оснащается стандартным , которое по результатам этого испытания получило плохие оценки.

Самые качественные и эффективные передние фары?

По результату проведенных испытаний IIHS оценку "хорошо" получила оптика в автомобиле Toyota Prius V, которая оборудована передней светодиодной оптикой (максимальная комплектация).

В каких автомобилях приемлемая передняя оптика?

По результатам ночных испытаний световых передних фар и анализа полученных данных, Страховой институт дорожной безопасности присвоил оценку "приемлемо" следующим моделям автомобилей:

  • - (произведена после ноября 2015 года)
Обычно режим автоматического управления дальним светом обозначается на панели отдельным индикатором.

П рошлой осенью мы свели в очном поединке машины с галогенной, ксеноновой и LED-светотехникой (ЗР, 2015, № 11) – и выяснили, что способности светодиодных фар, которым поют дифирамбы производители и маркетологи, слегка преувеличены. Однако технологии не стоят на месте: за светодиодами наше светлое будущее! Поэтому мы пригнали на полигон десяток машин со светодиодными фарами и устроили им «темную». Разношерстная компания – от самых популярных и относительно доступных автомобилей до откровенно дорогих – дала обильную пищу для размышлений.

Классовое неравенство


Только Volvo предлагает широкий набор настроек головного света. В частности, у водителя есть возможность выбирать скорость, на которой происходит переход с ближнего света на дальний и обратно.

Разница в конструктивной сложности фар и систем управления ими оказалась настолько значительной, что мы разбили участников теста на несколько условных групп. Обладатели самых простых систем – Hyundai Tucson, Nissan X‑Trail и Toyota Land Cruiser 200. На Ниссане и Тойоте установлены полностью светодиодные фары и система автоматического управления дальним светом. Hyundai ее лишен, а по LED-технологии у него выполнен только ближний свет. Зато он умеет дополнительно подсвечивать повороты, чему не обучены оба «японца».

Вторую группу сформировали Infiniti Q50, Jaguar XF и Cadillac Escalade ESV, которые обладают внушительным арсеналом для борьбы с «силами тьмы»: располагают полностью светодиодными фарами, системой автоматического управления светом и функцией подсветки поворотов.

К высшей категории мы отнесли Audi Q7, Mercedes-Benz C‑класса, Volvo XC90 и Lexus LX. В довесок к перечисленным выше функциям они являются обладателями так называемых матричных фар, которые умеют сегментарно приглушать свет, чтобы не слепить водителей встречных и попутных машин, – и теоретически должны на голову превзойти прочих участников теста по качеству освещения дороги.

Общепринятой методики сравнительных испытаний современной светотехники нет. Поэтому, как и в случае с , мы разработали собственную тестовую программу, включающую комплекс различных упражнений.

Тесты поделили на три этапа. Для начала – статические испытания. В определенных точках замеряем люксметром освещенность в режиме ближнего и дальнего света, а также оцениваем работу боковых и поворотных фар (при их наличии). Затем в динамике проверяем, насколько четко и быстро функционирует автоматическое включение и выключение дальнего света, а еще – как работает матричная технология. На десерт – регламентированный тестовый маршрут по дорогам общего пользования, где, в отличие от рафинированных условий полигона, есть другие автомобили, дорожные знаки, мачты освещения и прочие особенности, сбивающие с толку управляющую электронику.

Из-за значительных технических различий и сильного разброса цен мы не стали расставлять участников теста по ранжиру, но лучших в отдельных дисциплинах ­выявили.





Ночное бдение

В полной темноте приступаем к замерам освещенности беспристрастным люксметром. Глаза перестают видеть объект, когда освещенность падает ниже пяти люксов. Но на границе светового пучка, за которой визуально начинается кромешная тьма, прибор еще фиксирует один люкс – вот это значение и примем в качестве пограничного. До нуля освещенность может снижаться очень долго – десятки метров! – но это уже фоновое значение, которым можно пренебречь.

С ближним светом всё поначалу кажется логичным. Простенький Nissan X‑Trail не добил светодиодными фарами и до 40 м, а продвинутые Audi Q7 и Mercedes-Benz C‑класса вышли аж за 130 м. Более чем трехкратная разница! Lexus LX и Jaguar XF продемонстрировали весьма скромные способности, явно не соответствующие их навороченной светотехнике: 40 и 65 м соответственно. Кроме того, Nissan и Lexus выделяются очень резкой границей перехода из света в темноту – возникает ощущение опустившегося занавеса. Ехать с такими фарами некомфортно.


Ночное многоборье: упражнения тестовой программы


1.
«Далеко гляжу»

Асфальтовая площадка размечена конусами на квадраты со стороной 10 м. Люксметром Эколайт СФАТ. 412125.002 замеряем освещенность у каждого конуса на высоте 0,1 м от асфальта. На основе полученных данных строим модели пучков дальнего и ближнего света. Они показывают распределение света и его дальность.

2. «Глаза разбегаются»

Во втором статическом упражнении измеряем ширину пучка и оцениваем эффективность режима подсветки поворотов (при его наличии). Конус установлен в 20 м перед бампером автомобиля. Пешеход приближается к нему справа под прямым углом к стоящей машине и останавливается по команде водителя на границе зоны видимости. Результат – расстояние в метрах от человека до конуса. Если у машины есть поворотный или боковой свет, то даны два результата –
без него и с ним.

3. «На встречке»

Самый очевидный из тестов в движении – встречный разъезд. Фиксируем, за сколько метров автоматика, заметив приближа­ющуюся машину, переключит дальний свет на ближний или, в случае матричных фар, начнет затемнять отдельные сегменты.

4. «Нагоняем попутного»

Чуть усложним предыдущее испытание и подставим камере не яркие фары, а зад­ние габаритные огни. Посмотрим, когда электронный разум перестанет слепить нагоняемый автомобиль.

5. «Внимание – обгон» ­

Тестовый автомобиль должен оперативно убавить яркость света, распознав опередившую его машину. Так как оба участника теста находятся в движении, результат представлен не в метрах, а в секундах.

6. «Скорость реакции»

По сути, имитируем ситуацию, когда встречный автомобиль выскакивает из-за поворота или после подъема. Автомобиль едет в кромешной темноте, а стоящая на встречной обочине машина в определенный момент (расстояние между машинами около 200 м) включает фары. Задача электроники всё та же – как можно быстрее переключиться на ближний свет. Фиксируем время реакции в секундах.

Орудие борьбы


Что представляло собой управление светом до появления интеллектуальных систем? Переключатель в салоне, фары, а между ними – незамысловатая электропроводка с реле и предохранителями. У героев сегодняшнего дня всё гораздо сложнее.

Первый помощник системы – датчик света. Он уже не первый десяток лет автоматически включает фары при наступлении сумерек или на въезде в туннель. У некоторых современных моделей заявлена функция изменения формы светового пучка и его яркости в зависимости от условий движения. В этом случае электроника также опирается на показания этого сенсора, а еще ей нужна информация о скорости машины. Так компьютер понимает, что необходимо задействовать городской или автобанный режим.


Автокорректор стал массовым с появлением ксеноновых фар больше двадцати лет назад. Оптические или механические датчики измеряют положение кузова относительно условного нулевого уровня, а блок управления дает команду на корректировку светового пучка по высоте. Важно понимать, что система довольно инертна и призвана компенсировать изменение угла наклона кузова в зависимости от загрузки автомобиля, а отрабатывать дорожные неровности или подстраивать пучок на спусках и подъемах она неспособна.

В 2000‑е годы стали набирать популярность поворотные фары, улучшающие видимость при маневрах. Они бывают двух типов: отдельная секция, включающаяся при необходимости, или подвижный оптический элемент ближнего света. Первый вариант используется исключительно для подсветки медленных поворотов (например, при въезде во двор), второй больше помогает при прохождении быстрых виражей, хотя и на черепашьей скорости польза от него заметна. В обоих случаях электроника опирается еще и на данные с датчика угла поворота руля. Как только водитель начал крутить баранку, тут же активируется подсветка в соответству­ющем направлении. Отдельные секции могут также реагировать на указатель поворота и включаться заранее. Очень удобно: водитель видит ситу­ацию «за углом», даже не начав маневр.


Автоматика управления дальним светом еще совсем молода. Ее внедрили, когда современные автомобили получили «зрение» – видеокамеры, расположенные рядом с датчиком света за салонным зеркалом. Объектив ловит любой достаточно яркий источник света и до момента его исчезновения из поля зрения держит фары в режиме ближнего света. В теории всё просто, но камера и ее програм­мная поддержка должны обладать недюжинными способностями. К примеру, нужно замечать задние габаритные огни, которые бывают очень тусклыми (особенно на возрастных машинах), и в то же время игнорировать свечение яркой отражающей пленки дорожных знаков.

Вершина современных технологий – так называемый матричный свет. Его впервые применила фирма Audi, а теперь он есть даже у вполне демократичного Опеля.

Количество светодиодов в фаре напрямую не влияет на эффективность освещения

При появлении встречной или попутной машины такие фары не выключают дальний свет полностью, а «вырезают» отдельный фрагмент светового пятна. Это обеспечивает водителю наилучший обзор и практически полностью исключает вероятность ослепления тех, кто на встречке.

Работает продвинутая система, опираясь на описанные выше датчики, а также дополнительные устройства. Так, Audi задействует еще и данные навигации, заранее перенастраивая свет под ближайший вираж.

Измерение границ дальнего света – изнурительный труд. Еще бы, ведь некоторые испытуемые заставляют отходить с люксметром почти на 300 м. Мы ожидали увидеть самый яркий свет на машинах с продвинутыми матричными фарами, но в лидерах неожиданно оказался Land Cruiser 200 с полностью светодиодной, но относительно простой светотехникой. Его результат – 290 м. «Японец», правда, нещадно «лупит» на встречную полосу, тогда как соперники с чуть худшей дальнобойностью (Volvo, Jaguar, Mercedes-Benz, Audi) сохраняют интеллигентное светораспределение. Впрочем, при наличии функции автоматического управления светом эту особенность Тойоты не стоит считать серьезным недостатком. Худшим ожидаемо оказался Hyundai с галогенными фарами дальнего света.

На примере Infiniti становится понятно, что на маленькой скорости поворотные фары (нижний снимок) не дают возможности увидеть близко расположенные помехи.

За исключением Ниссана и Тойоты, все машины умеют подсвечивать виражи с помощью поворотных механизмов в фаре или включением бокового света – противотуманки или отдельной секции в основной фаре. Управляющая электроника получает команду от указателя поворота или датчика угла поворота руля и отдает команду исполнительным механизмам.

Ширину светового пучка замеряем в 20 м от машины – на этом расстоянии поперек «взгляда» фар идет человек от оси симметрии машины к обочине. А мы замеряем точку, в которой он станет невидимым. Лучший результат показал Volvo: водитель видит пешехода, стоящего в 27,6 м справа от машины. Причем XC90 выдал этот результат без использования каких-либо дополнительных функций: измерения мы проводили в статике, когда у XC90 не активен механизм поворота фар (это, например, умеет Infiniti), а боковая подсветка противотуманной фарой бесполезна, потому что озаряет лишь небольшое пространство под бампером. Широко светят основные фары Volvo!

А вот Hyundai, наоборот, продемонстрировал, насколько эффективна дополнительная секция боковой подсветки. С ее помощью он повторил результат лидера – но для этого уже нужно крутить руль, чтобы включилась боковая подсветка. Остальные в этом упражнении серьезно отстали. Лучшие из числа преследователей – Infiniti Q50 (19,8 м с поворотными фарами) и Jaguar XF (19,2 м с боковым светом). Но оба в то же время оказались худшими при прямом положении колес: 10,2 и 9,9 м соответственно.

Со временем электроника станет лучше ориентироваться в нестандартных ситуациях, но сейчас много ложных срабатываний

Кстати, количество LED-источников в фаре напрямую не влияет на эффективность освещения. К примеру, Mercedes-Benz и Audi выступили в статичных дисциплинах практически наравне, при этом у С‑класса на одну фару приходится всего восемь светодиодов, а в Q7 только за дальний свет отвечают три десятка.

Поехали!











Для всех моделей даны снимки ближнего света


В динамических тестах мы оценивали работу автоматики переключения с дальнего света на ближний и обратно. Практически все машины выступили одинаково при встречном разъезде, когда в объектив камеры попадал яркий головной свет: они не испытывали затруднений и мгновенно меняли режим (кроме, разумеется, Hyundai, который лишен этой функции). А вот когда нужно было ориентироваться на более тусклые задние габариты, некоторые давали сбои. Nissan X‑Trail даже в идеальных условиях полигона, где на спецдорогах нет дополнительных источников света, мешающих корректной работе автоматики, распознавал их через раз.


Infiniti Q50 и Cadillac Escalade стабильно опаздывают при переключениях с дальнего света на ближний, когда их обгоняет другой автомобиль, – мы намерили соответственно четыре и три секунды задержки! Всё это время обогнавший их водитель мучается из-за отражающегося в зеркалах яркого света фар. Других замечаний у нас нет.

Сами разберемся

Работу автоматики дополнительно проверяли на дорогах общего пользования, где мешают другие источники света, сложный рельеф, дорожные знаки и автомобили. Сбои при распознавании габаритных огней повторились. Более того, к компании Infiniti, Ниссана и Кадиллака присоединилась Toyota. Эта четверка до последнего момента слепит водителя нагоняемого автомобиля в зеркала, вынуждая брать управление светом на себя и принудительно переключаться на ближний.

*Для всех автомобилей: до отметки падения освещенности ниже 1 лк. Масштаб
по вертикали 1:2

В целом электронный разум всех наших подопечных соображает более-менее аде­кватно (за исключением вышеупомянутой особенности). Ездить со световыми ассистентами действительно легче и приятнее – во всяком случае, пока не возникают специфические условия, которые на данном этапе развития технологий невозможно заложить в алгоритм.

Например, неудобно перед дальнобойщиками. Верх кабины грузовика появляется из-за пригорка намного раньше фар, на которые ориентируется управляющая система. А пока нет «раздражителя», дальний свет продолжает слепить – ведь положенные фурам три желтые лампочки наверху кабины теряются в темноте, электроника их не распознаёт. Пару раз я получил от фур вполне заслуженный упрек включением всех прожекторов. А в ручном режиме вежливый водитель, заметив верхние габариты грузовика, заранее переключился бы на ближний.

Чем дешевле машина, тем менее эффективен светодиодный свет

Похожие проблемы могут возникнуть в зимнюю слякоть. Камера попросту не поймет, что вот это тусклое мерцание впереди – головная оптика встречной машины.

Еще один нюанс – особенности рельефа дороги. До встречной машины запросто может быть километр, и ваш дальний ей пока не мешает. Или же вы оба спускаетесь в низину, когда свет можно не переключать до последнего момента. Как и в случае с фурой, грамотный водитель будет действовать по ситуации, а электроника переключает свет строго в соответствии с заложенной программой – когда встречные фары начнут «бить в лоб».


*Для всех автомобилей: до отметки падения освещенности ниже 1 лк. Масштаб
по вертикали 1:2

Конечно, со временем электроника станет получать больше информации (например, через коммуникацию Car-to-Car или Car-to-Х) и лучше ориентироваться в нестандартных ситуациях. Пока же всем машинам они не по зубам.

Дань технологиям

Выводы из нашего ночного дозора следу­ющие. Еще раз подтвердился тезис, что сами по себе светодиоды в фаре вовсе не гарантируют ее отличную работу. И чем дешевле машина (и соответственно фара), тем хуже свет. Переход с галогена и ксенона на светодиоды обусловлен необходимостью быть в тренде и рапортовать о снижении энергопотребления.

Среди очевидных плюсов LED-фар – более привычный для человеческого глаза спектр и «вечные» источники света (второе утверждение чисто теоретическое и требует подтверждения практикой).

Минусы – сложная и дорогая конструкция, которая при любых неполадках или повреждениях заменяется только в сборе.


Наши рекомендации таковы.
Доплачивать за «просто» LED-фары не стоит. Но если они оснащены хотя бы одной-двумя дополнительными функциями, например поворотным светом, дополнительными секциями боковой подсветки, автоматическим управлением дальним светом или, наконец, матричной технологией, имеет смысл раскошелиться, если финансы позволяют. Это чрезвычайно полезный арсенал, заметно повышающий уровень активной безопасности и делающий поездки в темное время комфортнее.

Все, что вы хотели знать о светодиодной оптике, но боялись спросить

Тема этого материала родилась почти спонтанно, во время полевых испытаний эффективности различных моделей дополнительных фар. Разнообразие световых приборов мощностью от 10 до 234 Вт заставило еще раз задуматься о том, что и как должно быть высвечено вокруг автомобиля, преодолевающего путь в сложных внедорожных и метеорологических условиях. Итак, тема сегодняшней лекции: что нам дает дополнительный светодиодный свет; куда, как и в каком количестве его направлять.

Казалось бы, чего там думать: чем свет ярче, тем лучше, и чем больше лампочек - тем наряднее. Но это справедливо лишь в отношении новогодней елки. А у автомобильного света задача иная: обеспечивать водителю обзор в темное время суток. Штатные фары автомобиля с ней в общем-то справляются. Другое дело, что этот свет (как и серийный конвейерный автомобиль) рассчитан на среднестатистические условия, в которых длительные ночные поездки скорее исключение, чем правило. К регулярной ночной эксплуатации машину надо готовить. При этом единого универсального рецепта нет. Например, идеальная для раллистов-«классиков» схема с низко расположенными двумя парами прожекторов с разной шириной луча и стоящими еще ниже противотуманками не подойдет для трофийного внедорожника. И наоборот, световые приборы на крыше легковой машины - это лишние неоправданные траты. Рекомендации по подбору и установке допсвета будут различаться даже в зависимости от того, что преобладает в ночных маршрутах - автомагистрали, узкие местные шоссе или полевые грунтовки.

Как делали съемку, или ключ к визуальному ряду

Для фотосъемки мы специально подобрали участок местности, позволяющий оценить дальность и широту освещения разными светодиодными фарами в реальной обстановке. Слева - нескошенная трава высотой около метра, справа - мелиоративная канава, по берегу которой идут столбы ЛЭП. Точные расстояния от места съемки до столбов:
1 - 53 м
2 - 100 м
3 - 154 м
4 - 205 м
5 - 252 м
6 - 313 м
7 - 347 м
8 - 382 м
9 - 445 м

Для более точной визуальной оценки через каждые 20 м на дороге выставлены 18 пластиковых светоотражающих конусов. Деревья правее ЛЭП служат ориентирами для оценки ширины светового потока на уровне 100 м перед машиной. Ближний столб на фото, снятых длиннофокусным объективом, это все тот же первый столб, что и на общем плане. Фары на багажнике находятся на высоте 2,1 м над землей, на бампере - на высоте 75 см. Остальные условия съемки таковы: новолуние, переменная облачность, воздух прозрачный.


Полупроводники

Светодиодные фары получили широкое распространение на автомобилях не так давно, но за последнее время начали изрядно теснить галоген и ксенон, особенно в сегменте дополнительных световых приборов. Причин тому несколько. Они экологически безопасны, существенно ярче ламп накаливания при той же мощности, не требуют дополнительных устройств для подключения и эксплуатации (в отличие от газоразрядных источников), их проще герметизировать. Плюс к этому светодиодный свет высокой цветовой температуры (около 6000 °К) человеческий глаз субъективно воспринимает контрастнее и ярче, чем он есть на самом деле.

В целом у светодиодной оптики применительно к автомобилю плюсов больше, чем минусов, и стать основной световой технологией ей мешает лишь высокая цена. Сами светодиоды стоят относительно недорого, но для работы им требуются встроенные блоки питания и внешние радиаторы, причем немаленькие. Чтобы лампа могла работать при температуре +40 °С, на каждые 5 Вт тепловой мощности светодиодов требуется 100 см2 площади радиатора. Именно поэтому полупроводниковые фары, как правило, выпускают в алюминиевых корпусах с развитыми ребрами. И по той же самой причине на автомобиле такой свет лучше устанавливать на открытом продуваемом всеми ветрами месте, а не в глухой утепленной нише.

Мощные балки (234 Вт/30) при установке на бампере (фото слева) дают слишком яркую засветку вблизи и оставляют много теневых провалов вдали. При установке сверху (фото справа) свет получается гораздо ровнее. При такой освещенности контраст капота и окружающей местности невелик

Свет против тьмы

Человеческое зрение - очень сложный механизм, он адаптируется к общему уровню освещенности. В условиях недостатка света глаз вскоре начинает выхватывать из тьмы все новые и новые детали. Это получается тем лучше, чем ровнее свет. При резком контрасте света и тени сетчатка адаптируются к более ярким участкам - и от этого все, что попадает в тень, проваливается в темноту. Получается, что ровное освещение помогает ориентироваться, когда вокруг множество мелких деталей и подробностей, например, на лесных дорожках. А резкий луч позволяет находить «зацепки» для глаза там, где деталей почти нет, например, искать заметенную снежную колею. Значит, внедорожнику нужен комбинированный свет, а у дополнительных фар должно быть четкое разделение труда.

Итак, для безопасного движения по шоссе будут полезен, во-первых, «еще более дальний свет», а во-вторых, подсветка обочин в ближней зоне. Для преодоления бездорожья пригодится широкая дальняя световая заливка в переднем секторе для оценки предстоящих препятствий и выбора верной траектории. А кроме того, нужна еще ровная диагонально-боковая подсветка для поиска просек и малозаметных поворотов плюс яркий задний свет для уверенного маневрирования.

Мощность и размер имеют значение. Сравните: слева 30 Вт/8, справа 120 Вт/8. В лучах более слабой лампы даже видны красноватые блики от габаритных огней автомобиля. На правой фотографии габариты тоже включены, но на общий уровень освещенности в этом случае они уже не влияют


Кто шагает ровно в ряд?

Светодиодные балки пришли в оффроуд из мира промышленного оборудования и строительства. Там они применяются, когда нужно высветить большую площадь. Длинные балки с большим количеством установленных в ряд диодов дают очень широкий по горизонтали поток, равномерно заливающий местность на приличном удалении от машины. При этом самые мощные из них светят существенно дальше штатного дальнего света автомобиля, превращая ночное бездорожье в визуально комфортное пространство. Например, 234-ваттная двухрядка отечественной марки «СТОКРАТ» светит метров на 800, и с водительского места кажется, что в передней полусфере все высвечено почти как днем. Только представьте: на 400-метровой отметке в ее лучах можно… читать! Это при том, что такое расстояние уже близко к предельному для штатного дальнего света автомобиля с исправными почти новыми фарами и заведомо хорошими фирменными галогеновыми лампочками. Эти визуальные наблюдения подтверждаются и инструментальными замерами освещенности при помощи студийного фотоэкспонометра.

Собственно, даже «младшие» модели световых балок мощностью 30, 36 или 60 Вт, будучи установленными на крыше внедорожника (в нашем случае - Toyota Land Cruiser 70), превосходят его дальний свет по дальнобойности, при том что уступают ему по качеству освещения на дистанциях до 200 м. Поэтому малые балки стоит рекомендовать главным образом в качестве дальних прожекторов. В таком случае место светового прибора, а то и сразу двух - на бампере, чтобы им можно было пользоваться на неосвещенных автомагистралях. А вот большие «линейки» лучше ставить на крышу: оттуда они ровнее высвечивают местность и даже относительно высокие препятствия (травостой, переломы рельефа) не дают теневых провалов. Особенно эффективен такой свет на сложных в навигационном отношении пространствах, прежде всего безлесных.

Опасения, что мощная балка будет пересвечивать капот и бликовать на ветровом стекле, напрасны. Просто не надо ее ставить прямо над стеклом. Достаточно сместить сантиметров на двадцать назад - и никаких бликов. Но по той же причине пользоваться таким светом на ночных шоссе небезопасно (даже установив его на бампер для формального соответствия требованиям ГИБДД). Во-первых, можно ослепить встречного водителя, еще даже не успев увидеть его машину. Вовторых, при выключении столь мощного источника световой заливки глаза будут адаптироваться к резко наступившей темноте слишком долгое для трассовых скоростей время.

Одна короткая балка в качестве дополнительного дальнего света (слева) менее эффективна, чем два традиционных прожектора (справа)


Направленные или рассеянные?

Дополнительные фары традиционных форм, применяемые на автомобилях еще со времен ацетиленовых горелок, сейчас тоже активно используют светодиоды. При этом так же традиционно они разделяются по ширине светового пучка и конструктивно заложенной дальности на направленные (дальние) и рассеянные (ближние, или рабочие). Угол светового пучка направленных фар обычно не превышает 30 градусов. Самые мощные из них могут конкурировать по дальности с балками, так что вполне подходят на роль трассовых прожекторов.

Впрочем, направленность светового пучка не всегда означает яркость и мощность. Так, существуют направленные фары мощностью всего 10 Вт, дальнобойность которых не достигает и 300 м. Уже на 100 м они дают худшую освещенность, чем штатный автомобильный свет на 300. Так зачем тогда они нужны, спросите вы. Все просто. Это прожекторы для квадроциклов. Малые физические размеры и малая мощность тут вполне оправданны. 10–12-ваттные приборы создают минимальную нагрузку на бортовую электросистему квадрика. К тому же вы еще помните про способность глаза адаптироваться? У пилота квадроцикла, едущего без крыши над головой и светящейся приборной панели перед глазами, зрение обычно приспосабливается к более тусклому освещению, чем у водителя автомобиля. Да и заляпанные грязью стекла обзор не ухудшают.

А вот рассеянный свет даже весьма скромных характеристик, по-видимому, тоже проектировавшийся под квадрик, на автомобиле вполне востребован. Маломощные фары, дающие широкую заливку, хороши для освещения местности по бокам и сзади, особенно при проведении эвакуационно-спасательных работ. Несколько таких «лампочек», глядящих на мир в разные стороны с верхнего багажника, дают очень ровный и яркий свет, но не слепят глаза тех, кто возится снаружи автомобиля. В такой ситуации чем больше угол светового пучка, тем лучше. Есть даже 90-градусные модели мощностью 10 Вт, компенсирующие недостаток дальности отличным охватом. При этом они все равно ярче штатных огней заднего хода большинства легковых внедорожников и могут отлично их дополнить, при правильной настройке уверенно подсвечивая местность в пределах 150 м

Более мощные 20- и тем более 40-ваттные фары рассеянного света горят еще ярче и также вполне применимы в качестве боковых и задних фонарей. Необходимость в лучшем освещении задней полусферы обычно возникает при сложных маневрах на ограниченном участке пересеченной местности. Этот же тип фар лучше всего подходит для освещения передних диагоналей. Если они расположены на багажнике, то их свет будет сглаживать в боковых окнах резкую светотеневую границу от люстры или мощных прожекторов. А будучи установленными на бампер , они начинают подсвечивать «сюрпризы» на обочинах темных второстепенных шоссе.

Оптический парадокс: с водительского места кажется, что пара 12-ваттных направленных фар (вверху) светит хуже, чем пара 10-ваттных рассеянных (внизу). Дело в освещенности ближнего плана, притом что направленные светят объективно дальше (справа)


Итог

Конфигурация дополнительных светодиодных фар, которая приживется на вашем автомобиле, будет зависеть и от условий эксплуатации, и от бюджета. Главное - рационально и по максимуму использовать те возможности, которые дают световые приборы разных типов и конструкций. Что же касается их дизайна, то нередко в одинаковом корпусе делают фары разных типов, различающиеся только отражателями и рефлекторами. Но главное во всех приборах дополнительного освещения - это их световой поток, который важнее, даже чем номинальная мощность и форма корпуса. В будущих номерах мы обязательно проведем полевые сравнения фар различных типов от разных производителей.

Сравнение освещенности одной светодиодной фарой разных моделей «СТОКРАТ» в направлении максимального светового потока, лк (лм/м 2)
Световой прибор 100 м 200 м 300 м 400 м Предел освещенной зоны, м
Балка 234/30 694 160 75 42
Балка 126/30 398 92 40 20
Балка 120/08 372 86 38 19
Балка 90/08 320 80 35 19
Штатный свет Toyota * 284 57 17 3,7
Балка 60/08 230 57 25 14
Балка 30/08 98 27 13 7
Балка 36/30 78 2 10 5
Направленный 40/25 71 19 7 4
Направленный 10/30 40 10 4 340
Рабочий 40/45 30 7 3 330
Направленный 12/30 28 8 2,5 310
Направленный 10/08 15 4 260
Рабочий 20/90 8 170
Рабочий 12/60 черный 8 160
Рабочий 10/40 8 160
Рабочий 10/90 7 160
Рабочий 12/60 белый 6 160
*Включен дальний свет в обеих фарах, установленных на штатном месте. Фары «СТОКРАТ» установлены на багажнике.

Прошлым летом Американский Страховой институт дорожной безопасности (IIHS) уже публиковал у продающихся на местном рынке кроссоверов и внедорожников. Тогда ни одна модель не смогла блеснуть действительно хорошими фарами, а больше половины машин и вовсе провалили тесты. Теперь - вторая серия испытаний, в которой приняло участие 38 кроссоверов и внедорожников. Более того, в IIHS провели тесты кроссоверов в разных комплектациях, которые отличаются типом головного света, то есть всего испытания прошли аж 79 машин. Но в итоговую таблицу попали только модификации с лучшими фарами из предлагаемых.

В ходе испытаний эксперты IIHS проверяли дальнобойность и яркость фар, распределение светового пучка (причем как при движении по прямой, так и в поворотах), адаптивные функции, а также работу ассистирующей электроники вроде автоматики переключения между дальним и ближним светом. Испытатели особенно подчеркивают, что на итоговый рейтинг влияли все эти параметры: например, большая часть машин имела очень яркие фары, однако многие из них оказались недостаточно хороши в остальных дисциплинах.

Результаты испытаний головного света (в скобках указаны названия, использующиеся на российском рынке)

Из всего набора одиннадцать полноприводников заработали оценку «плохо» (Poor). Двенадцать машин выступили «на пределе допустимого» (Marginal), еще столько же получили оценку «удовлетворительно» (Acceptable). И только два кроссовера удостоились оценки «Хорошо» (Good). Первый - Volvo XC60, причем это автомобиль еще первого поколения с адаптивным ксеноновыми фарами ближнего света, ведь новая модель выйдет на американский рынок только к концу года. Версия с простыми галогеновыми фарами прошла испытания «на пределе допустимого». А второй «отличник» - семиместный паркетник Hyundai Santa Fe, который в России продается под именем Grand Santa Fe. Однако высшую оценку заработала версия с опционным адаптивным «биксеноном» и автоматическим переключателем дальнего света. А базовый кроссовер с галогенками испытания провалил: оценка «плохо».

Интересно, что аналогичный рейтинг в итоге присвоен и родственному кроссоверу Hyundai Santa Fe Sport (в России - «просто» Santa Fe): ни одна из доступных в США модификаций не смогла похвастать на испытаниях IIHS достойным головным светом! А худшими в рейтинге стали кроссоверы Ford Edge (в России не продается) и Kia Sorento (у нас известен под именем Sorento Prime). Например, к корейской модели ксеноновые фары ближнего света бьют лишь на 45 метров, тогда как рекордсмен Volvo XC60 светит вдвое дальше: на 96 метров.

Как и год назад, эксперты вновь не обнаружили явной зависимости качества света от типа его источника (галогеновые, ксеноновые или светодиодные лампы). Зато важна конструкция фары: все модели с оценками «хорошо» и «удовлетворительно» имели так называемые проекционные фары с линзами. Рефлекторный головной свет показал себя не столь эффективно.

С 2017 года хороший или приемлемый результат испытаний головного света стал обязательным условием для того, чтобы автомобиль удостоился от IIHS премии Top Safety Pick, наличие которой является весомым аргументом для американских покупателей. Однако не стоит проецировать результаты американских испытаний на аналогичные автомобили, продающиеся в России. Ведь в Штатах действуют иные требования к форме пучка, яркости ламп и границе освещенности.

Прошлой осенью мы свели в очном поединке машины с галогенной, ксеноновой и LED-светотехникой (ЗР, 2015, № 10) - и выяснили, что способности светодиодных фар, которым поют дифирамбы производители и маркетологи, слегка преувеличены. Однако технологии не стоят на месте: за светодиодами наше светлое будущее! Поэтому мы пригнали на полигон десяток из доступных на российском рынке машин со светодиодными фарами и устроили им «темную». Разношерстная компания - от самых популярных и относительно доступных автомобилей до откровенно дорогих - дала обильную пищу для размышлений.

Классовое неравенство

Разница в конструктивной сложности фар и систем управления ими оказалась настолько значительной, что мы разбили участников теста на несколько условных групп. Обладатели самых простых систем - Hyundai Tucson , Nissan X‑Trail и Toyota Land Cruiser 200. Не удивляйтесь, что «двухсотый» со стартовой ценой 3,8 млн рублей попал в эту компанию - по степени технической навороченности Toyota находится на уровне автомобилей Hyundai и Nissan. На Ниссане и Тойоте установлены полностью светодиодные фары и система автоматического управления дальним светом. Hyundai ее лишен, а по LED-технологии у него выполнен только ближний свет. Зато он умеет дополнительно подсвечивать повороты, чему не обучены оба «японца».

Вторую группу сформировали Infiniti Q50, Jaguar XF и Cadillac Escalade ESV, которые обладают внушительным арсеналом для борьбы с «силами тьмы»: располагают полностью светодиодными фарами, системой автоматического управления светом и функцией подсветки поворотов.

К высшей категории мы отнесли Audi Q7, Mercedes-Benz C‑класса , Volvo XC90 и Lexus LX. В довесок к перечисленным выше функциям они являются обладателями так называемых матричных фар, которые умеют сегментарно приглушать свет, чтобы не слепить водителей встречных и попутных машин, - и теоретически должны на голову превзойти прочих участников теста по качеству освещения дороги.

Общепринятой методики сравнительных испытаний современной светотехники нет. Поэтому, как и в случае с системами автоматического торможения (ЗР, 2015, № 6), мы разработали собственную тестовую программу, включающую комплекс различных упражнений.

Тесты поделили на три этапа. Для начала - статические испытания. В определенных точках замеряем люксметром освещенность в режиме ближнего и дальнего света, а также оцениваем работу боковых и поворотных фар (при их наличии). Затем в динамике проверяем, насколько четко и быстро функционирует автоматическое включение и выключение дальнего света, а еще - как работает матричная технология. На десерт - регламентированный тестовый маршрут по дорогам общего пользования, где, в отличие от рафинированных условий полигона, есть другие автомобили, дорожные знаки, мачты освещения и прочие особенности, сбивающие с толку управляющую электронику.

Из-за значительных технических различий и сильного разброса цен мы не стали расставлять участников теста по ранжиру, но лучших в отдельных дисциплинах выявили.

Ночное многоборье: упражнения тестовой программы

1. «Далеко гляжу»

Асфальтовая площадка размечена конусами на квадраты со стороной 10 м. Люксметром Эколайт СФАТ. 412125.002 замеряем освещенность у каждого конуса на высоте 0,1 м от асфальта. На основе полученных данных строим модели пучков дальнего и ближнего света. Они показывают распределение света и его дальность.

2. «Глаза разбегаются»

Во втором статическом упражнении измеряем ширину пучка и оцениваем эффективность режима подсветки поворотов (при его наличии). Конус установлен в 20 м перед бампером автомобиля. Пешеход приближается к нему справа под прямым углом к стоящей машине и останавливается по команде водителя на границе зоны видимости. Результат - расстояние в метрах от человека до конуса. Если у машины есть поворотный или боковой свет, то даны два результата - без него и с ним.

3. «На встречке»

Самый очевидный из тестов в движении - встречный разъезд. Фиксируем, за сколько метров автоматика, заметив приближающуюся машину, переключит дальний свет на ближний или, в случае матричных фар, начнет затемнять отдельные сегменты.

4. «Нагоняем попутного»

Чуть усложним предыдущее испытание и подставим камере не яркие фары, а задние габаритные огни. Посмотрим, когда электронный разум перестанет слепить нагоняемый автомобиль.

5. «Внимание - обгон»

Тестовый автомобиль должен оперативно убавить яркость света, распознав опередившую его машину. Так как оба участника теста находятся в движении, результат представлен не в метрах, а в секундах.

6. «Скорость реакции»

По сути, имитируем ситуацию, когда встречный автомобиль выскакивает из-за поворота или после подъема. Автомобиль едет в кромешной темноте, а стоящая на встречной обочине машина в определенный момент (расстояние между машинами около 200 м) включает фары. Задача электроники всё та же - как можно быстрее переключиться на ближний свет. Фиксируем время реакции в секундах.

Ночное бдение

В полной темноте приступаем к замерам освещенности беспристрастным люксметром. Глаза перестают видеть объект, когда освещенность падает ниже пяти люксов. Но на границе светового пучка, за которой визуально начинается кромешная тьма, прибор еще фиксирует один люкс - вот это значение и примем в качестве пограничного. До нуля освещенность может снижаться очень долго - десятки метров! - но это уже фоновое значение, которым можно пренебречь.

С ближним светом всё поначалу кажется логичным. Простенький Nissan X‑Trail не добил светодиодными фарами и до 40 м, а продвинутые Audi Q7 и Mercedes-Benz C‑класса вышли аж за 130 м. Более чем трехкратная разница! Lexus LX и Jaguar XF продемонстрировали весьма скромные способности, явно не соответствующие их навороченной светотехнике: 40 и 65 м соответственно. Кроме того, Nissan и Lexus выделяются очень резкой границей перехода из света в темноту - возникает ощущение опустившегося занавеса. Ехать с такими фарами некомфортно.

Измерение границ дальнего света - изнурительный труд. Еще бы, ведь некоторые испытуемые заставляют отходить с люксметром почти на 300 м. Мы ожидали увидеть самый яркий свет на машинах с продвинутыми матричными фарами, но в лидерах неожиданно оказался Land Cruiser 200 с полностью светодиодной, но относительно простой светотехникой. Его результат - 290 м. «Японец», правда, нещадно «лупит» на встречную полосу, тогда как соперники с чуть худшей дальнобойностью (Volvo, Jaguar, Mercedes-Benz, Audi) сохраняют интеллигентное светораспределение. Впрочем, при наличии функции автоматического управления светом эту особенность Тойоты не стоит считать серьезным недостатком. Худшим ожидаемо оказался Hyundai с галогенными фарами дальнего света.

За исключением Ниссана и Тойоты, все машины умеют подсвечивать виражи с помощью поворотных механизмов в фаре или включением бокового света - противотуманки или отдельной секции в основной фаре.

Управляющая электроника получает команду от указателя поворота или датчика угла поворота руля и отдает команду исполнительным механизмам. Ширину светового пучка замеряем в 20 м от машины - на этом расстоянии поперек «взгляда» фар идет человек от оси симметрии машины к обочине. А мы замеряем точку, в которой он станет невидимым. Лучший результат показал Volvo: водитель видит пешехода, стоящего в 27,6 м справа от машины. Причем выдал этот результат без использования каких-либо дополнительных функций: измерения мы проводили в статике, когда у XC90 не активен механизм поворота фар (это, например, умеет Infiniti), а боковая подсветка противотуманной фарой бесполезна, потому что озаряет лишь небольшое пространство под бампером. Широко светят основные фары Volvo!

А вот Hyundai, наоборот, продемонстрировал, насколько эффективна дополнительная секция боковой подсветки. С ее помощью он повторил результат лидера - но для этого уже нужно крутить руль, чтобы включилась боковая подсветка. Остальные в этом упражнении серьезно отстали. Лучшие из числа преследователей - Infiniti Q50 (19,8 м с поворотными фарами) и Jaguar XF (19,2 м с боковым светом). Но оба в то же время оказались худшими при прямом положении колес: 10,2 и 9,9 м соответственно.

Кстати, количество LED-источников в фаре напрямую не влияет на эффективность освещения. К примеру, Mercedes-Benz и Audi выступили в статичных дисциплинах практически наравне, при этом у С‑класса на одну фару приходится всего восемь светодиодов, а в Q7 только за дальний свет отвечают три десятка.

Поехали!

В динамических тестах мы оценивали работу автоматики переключения с дальнего света на ближний и обратно. Практически все машины выступили одинаково при встречном разъезде, когда в объектив камеры попадал яркий головной свет: они не испытывали затруднений и мгновенно меняли режим (кроме, разумеется, Hyundai, который лишен этой функции). А вот когда нужно было ориентироваться на более тусклые задние габариты, некоторые давали сбои. Nissan X‑Trail даже в идеальных условиях полигона, где на спецдорогах нет дополнительных источников света, мешающих корректной работе автоматики, распознавал их через раз.

Infiniti Q50 и Cadillac Escalade стабильно опаздывают при переключениях с дальнего света на ближний, когда их обгоняет другой автомобиль, - мы намерили соответственно четыре и три секунды задержки! Всё это время обогнавший их водитель мучается из-за отражающегося в зеркалах яркого света фар. Других замечаний у нас нет.